<span>First, we use the kinetic energy equation to create a formula:
Ka = 2Kb
1/2(ma*Va^2) = 2(1/2(mb*Vb^2))
The 1/2 of the right gets cancelled by the 2 left of the bracket so:
1/2(ma*Va^2) = mb*Vb^2 (1)
By the definiton of momentum we can say:
ma*Va = mb*Vb
And with some algebra:
Vb = (ma*Va)/mb (2)
Substituting (2) into (1), we have:
1/2(ma*Va^2) = mb*((ma*Va)/mb)^2
Then:
1/2(ma*Va^2) = mb*(ma^2*Va^2)/mb^2
We cancel the Va^2 in both sides and cancel the mb at the numerator, leving the denominator of the right side with exponent 1:
1/2(ma) = (ma^2)/mb
Cancel the ma of the left, leaving the right one with exponent 1:
1/2 = ma/mb
And finally we have that:
mb/2 = ma
mb = 2ma</span>
Answer:
A). σ = 3.823 x
/N-
B).
C/
C).
J
Explanation:
A). We know magnitude of charge per unit area for a conducting plate is given by

where, E is resultant electric field = 1.2 x
V/m
is permittivity of free space = 8.85 x
/N-
k is dielectric constant = 3.6
∴
= 3.6 x 8.85 x
x 1.2 x 
= 3.823 x
/N-
B).Now we know that the magnitude of charge per unit area on the surface of the dielectric plate is given by


C/
C).
Area of the plate, A = 2.5 
= 2.5 x 

diameter of the plate, d = 1.8 mm
= 1800 m
∴ Total energy stored in the capacitor


J
The time is given, and you want to find the average velocity. To do this, you need to know the distance covered by the driver around the racetrack in that 30 seconds. You divide this by the time, then you will obtain the average velocity in units of, say meters per second.
Answer:
Explanation:
The speed of the water in the large section of the pipe is not stated
so i will assume 36m/s
(if its not the said speed, input the figure of your speed and you get it right)
Continuity equation is applicable for ideal, incompressible liquids
Q the flux of water that is Av with A the cross section area and v the velocity,
so,


the diameter decreases 86% so


Thus, speed in smaller section is 48.6 m/s
2 because when you are doing this it causes friction Which then cause the balloon to stick
~dany-ley