Answer:

(Downwards)
(Towards Left)
Explanation:
As we know that beam is in equilibrium
So here we can use torque balance as well as force balance for the beam
Now by torque balance equation at the pivot we can say

As we know that
mg = 1.40 kN
F = 5 kN
so we will have


Now force balance in vertical direction


(Downwards)
Force balance in horizontal direction


(Towards Left)
The answer for this question, If I am correct, should be answer "D".
Answer:
Flow Rate = 80 m^3 /hours (Rounded to the nearest whole number)
Explanation:
Given
- Hf = head loss
- f = friction factor
- L = Length of the pipe = 360 m
- V = Flow velocity, m/s
- D = Pipe diameter = 0.12 m
- g = Gravitational acceleration, m/s^2
- Re = Reynolds's Number
- rho = Density =998 kg/m^3
- μ = Viscosity = 0.001 kg/m-s
- Z = Elevation Difference = 60 m
Calculations
Moody friction loss in the pipe = Hf = (f*L*V^2)/(2*D*g)
The energy equation for this system will be,
Hp = Z + Hf
The other three equations to solve the above equations are:
Re = (rho*V*D)/ μ
Flow Rate, Q = V*(pi/4)*D^2
Power = 15000 W = rho*g*Q*Hp
1/f^0.5 = 2*log ((Re*f^0.5)/2.51)
We can iterate the 5 equations to find f and solve them to find the values of:
Re = 235000
f = 0.015
V = 1.97 m/s
And use them to find the flow rate,
Q = V*(pi/4)*D^2
Q = (1.97)*(pi/4)*(0.12)^2 = 0.022 m^3/s = 80 m^3 /hours
Answer:
Resistivity of both wires are same
Explanation:
Length of one wire,
Diameter,
Radius,




Temperature in each case is same.
Area of each wire,
Resistivity is the property of material due to which it offers resistance to the flow of current.
Resistivity of material depends upon the temperature and material by which it is made.
It does not depends upon the length of object.
Therefore, the resistivity of both wires of different length are same.