Answer:
- asses disease progression and tissue function
- utilize a biologically active molecule
- utilize a radionuclide tracer
Explanation:
Answer:
Mass
Explanation:
Inertia is essentially an object's tendency to stay in motion or at rest unless it is forced to do otherwise (pun intended). It only makes sense to me that mass would best quantify an object's inertia, because an object with more mass would be harder to move and/or stop from moving.
Explanation:
The waveform expression is given by :
...........(1)
Where
y is the position
t is the time in seconds
The general waveform equation is given by :
..........(2)
Where


On comparing equation (1) and (2) we get :



f = 93.10 Hz
Time period, 

T = 0.010 s
Phase constant, 
Hence, this is the required solution.
Answer:
The heat transferred from water to skin is 6913.5 J.
Explanation:
Given that,
Weight of water = 25.0 g
Suppose that water and steam, initially at 100°C, are cooled down to skin temperature, 34°C, when they come in contact with your skin. Assume that the steam condenses extremely fast. We will further assume a constant specific heat capacity c=4190 J/(kg°K) for both liquid water and steam.
We need to calculate the heat transferred from water to skin
Using formula for stream

Put the value into the formula


Hence, The heat transferred from water to skin is 6913.5 J.
Answer:
a) 600nm
b) 300nm
Explanation:
the path difference = 2t
t = thickness of the film
L' = wavelength of light in film = L/n
L = wavength of light in air
n = refractive index of glass
(a)
for destructive interference 2t = L'/2 = L/2n
L = 4*t*n
= 4*120*10^-9*1.25
L = 600 nm
(b)
for constructive interference 2t = L' = L/1.25
L = 2tn
= 2 × 1.25 × 120nm
= 300 nm