Explanation:
It is given that,
Mass of the ball, m = 1 lb
Length of the string, l = r = 2 ft
Speed of motion, v = 10 ft/s
(a) The net tension in the string when the ball is at the top of the circle is given by :



F = 18 N
(b) The net tension in the string when the ball is at the bottom of the circle is given by :



F = 82 N
(c) Let h is the height where the ball at certain time from the top. So,


Since, 

Hence, this is the required solution.
Answer:
23.1 N/C
Explanation:
OP = 3 m , OQ = 4 m

q = - 8 nC, Q = 75 nC
Electric field at P due to the charge Q is

Electric field at P due to the charge q is

According to the diagram, tanθ = 3/4
Resolve the components of E1 along x axis and along y axis.
So, Electric field along X axis, Ex = - E1 Cos θ
Ex = - 27 x 4 / 5 = - 21.6 N/C
Electric field along y axis, Ey = E1 Sinθ - E2
Ey = 27 x 3 /5 - 8 = 8.2 N/C
The resultant electric field at P is given by

Power may be defined as the rate of doing work or the rate of using energy. <span> It is the amount of energy consumed per unit time. It is calculated as follows:
P = E / t
P = 480 / 5
P = 96 W <-----OPTION 3
Hope this answers the question. Have a nice day.</span>