answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
blagie [28]
2 years ago
10

Samantha wants her friend to wear a bicycle helmet when they go cycling. She wants to explain how a bicycle is designed to provi

de effective protection from head injuries. Write a short explanation about the effectiveness of a bicycle helmet that will help Samantha convince her friend.
Physics
2 answers:
givi [52]2 years ago
7 0
If you don't wear a helmet and let's say you fell off your bike, you can severely injure your head! But if you DO wear a helmet and you fell off your bike, there's about I predict a 98% chance that you won't injure but sometimes it's 100%

hope this helps!<span />
vodomira [7]2 years ago
5 0

Answer:

Explanation:

A bicycle helmet is a very important gear to wear before riding a bicycle because :

1. It protects your head and brain from injury when you fall or crash into a moving car.

2. It reduces the chances of head,face and neck injuries.

It gives you the opportunity to show off your style. Most bicycle helmets have very colourful and great designs that add beauty to your outlook while riding a bicycle.

3. It makes you visible to other motorist using the road especially at night. Bicycle helmets has reflective shiny colours that gets the other road users attention.

You might be interested in
I pull the throttle in my racing plane at a = 12.0 m/s2. I was originally flying at v = 100. m/s. Where am I when t = 2.0s, t =
Helen [10]
Summary:
a= 12.0 m/(s^2)
v= 100m/s
t1= 2.0s => s1=?
t2=5.0s => s2=?
t3=10.0s => s3=?
——————
Solution:
• when t1=2.0 s, I have gone:
S1= v*t1 + 1/2*a*(t1^2)
=100.0 *2 + 1/2*12.0*(2.0^2)
=224 (m)

• when t2=5.0s, I have gone
S2=v*t2+ 1/2*a*(t2^2)
= 100*5.0+ 1/2*12.0*(5.0^2)
=650 (m)

•when t3= 10.0s, I have gone:
S3=v*t3+ 1/2*a*(t3^2)
=100*10.0+ 1/2*12*(10.0^2)
=1600 (m)
7 0
2 years ago
An air hockey game has a puck of mass 30 grams and a diameter of 100 mm. The air film under the puck is 0.1 mm thick. Calculate
OverLord2011 [107]

Answer:

time required after impact for a puck is 2.18 seconds

Explanation:

given data

mass = 30 g = 0.03 kg

diameter = 100 mm = 0.1 m

thick = 0.1 mm = 1 ×10^{-4} m

dynamic viscosity = 1.75 ×10^{-5} Ns/m²

air temperature = 15°C

to find out

time required after impact for a puck to lose 10%

solution

we know velocity varies here 0 to v

we consider here initial velocity = v

so final velocity = 0.9v

so change in velocity is du = v

and clearance dy = h

and shear stress acting on surface is here express as

= µ \frac{du}{dy}

so

= µ  \frac{v}{h}   ............1

put here value

= 1.75×10^{-5} × \frac{v}{10^{-4}}

= 0.175 v

and

area between air and puck is given by

Area = \frac{\pi }{4} d^{2}

area  =  \frac{\pi }{4} 0.1^{2}

area = 7.85 × \frac{v}{10^{-3}} m²

so

force on puck is express as

Force = × area

force = 0.175 v × 7.85 × 10^{-3}

force = 1.374 × 10^{-3} v    

and now apply newton second law

force = mass × acceleration

- force = mass \frac{dv}{dt}

- 1.374 × 10^{-3} v = 0.03 \frac{0.9v - v }{t}

t =  \frac{0.1 v * 0.03}{1.37*10^{-3} v}

time = 2.18

so time required after impact for a puck is 2.18 seconds

3 0
2 years ago
Why must the height of the meniscus in the graduated cylinder match the height of the water in the tub when measuring volume?
galben [10]

Answer:

See explanation

Explanation:

First, in order for you to understand, remember the basic concept of meniscus in graduated cylinder.

<em>"The meniscus is the curve seen at the top of a liquid in response to its container. The meniscus can be either concave or convex, depending on the surface tension of the liquid and its adhesion to the wall of the container".</em>

Now, according to this definition, and for water, the reading of the volume must be donde at the bottom of the curve of the meniscus. This is because the water  gives a concave curve.

If you read it and matches the height of water, you are getting two results:

One, get an accurate value or volume, because it's been done at eye level.

The second fact is that when you do the reading this way, The total pressure is made equal to the atmospheric pressure by adjusting the height of the cylinder until the water level is equal.

8 0
2 years ago
A silver wire 2.6 mm in diameter transfers a charge of 420 Cin 80 min. Silver contains 5.8 x 10^{28} free electrons per cubic me
never [62]

1) Current in the wire: 0.0875 A

The current in the wire is given by:

I=\frac{Q}{t}

where

Q is the charge passing a given point in the conductor

t is the time elapsed

In this problem, we have

Q = 420 C is the total charge passing through a given point in a time of

t = 80 min = 4800 s

So, the current is

I=\frac{420 C}{4800 s}=0.0875 A

2) Drift velocity of the electrons: 1.78\cdot 10^{-6} m/s

The drift velocity of the electrons in the wire is given by:

u = \frac{I}{nAq}

where

I = 0.0875 A is the current

n=5.8\cdot 10^{28} is the number of free electrons per cubic meter

A is the cross-sectional area

q=1.6\cdot 10^{-19} C is the charge of one electron

The radius of the wire is

r=\frac{d}{2}=\frac{2.6 mm}{2}=1.3 mm=0.0013 m

So the cross-sectional area is

A=\pi r^2=\pi (0.0013 m)^2=5.31\cdot 10^{-6} m^2

So, the drift velocity is

u = \frac{(0.0875 A)}{(5.8\cdot 10^{28})(5.31\cdot 10^{-6})(1.6\cdot 10^{-19}C)}=1.78\cdot 10^{-6} m/s

4 0
2 years ago
A child is sliding a toy block (with mass = m) down a ramp. The coefficient of static friction between the block and the ramp is
tiny-mole [99]

Answer:

F=mg(sin(\theta )-0.25 cos(\theta ))

Explanation:

The free body diagram of the block on the slide is shown in the below figure

Since the block is in equilibrium we apply equations of statics to compute the necessary unknown forces

N is the reaction force between the block and the slide

For equilibrium along x-axis we have

\sum F_{x}=0\\\\mgsin(\theta )-\mu N-F=0\\\therefore F=mgsin(\theta)-\mu N......(\alpha )\\Similarly\\\sum F_{y}=0\\\\N-mgcos(\theta )=0\\\therefore N=mgcos(\theta ).......(\beta )\\\\

Using value of N from equation β in α we get value of force as

F=mg(sin(\theta )-\mu cos(\theta ))

Applying values we get

F=mg(sin(\theta )-0.25 cos(\theta ))

8 0
2 years ago
Read 2 more answers
Other questions:
  • An amusement park ride spins you around in a circle of radius 2.5 m with a speed of 8.5 m/s. If your mass is 75 kg, what is the
    5·2 answers
  • Which elements do hydrogen fuel cells combine to produce electricity? hydrogen and oxygen hydrogen and carbon hydrogen, oxygen,
    6·2 answers
  • According to Newton's Law of Universal Gravitation, which of the following would cause the attractive force between a planet and
    8·1 answer
  • An ideal gas trapped inside a thermally isolated cylinder expands slowly by pushing back against a piston. The temperature of th
    11·1 answer
  • A bodybuilder lifts a 10 N weight a distance of 2.5 m. <br> How much energy has the weight gained?
    12·1 answer
  • Conduction of a nerve impulse would be the fastest in _________
    9·1 answer
  • You place a 3.0-m-long board symmetrically across a 0.5-m-wide chair to seat three physics students at a party at your house. If
    9·1 answer
  • A simple arrangement by means of which e.m.f,s. are compared is known
    8·1 answer
  • A trumpet player on a moving railroad flatcar moves toward a second trumpet player standing alongside the track both play a 490
    5·1 answer
  • Two spherical objects have masses of 200 kg and 500 kg. Their centers are separated by a distance of 25 m. Find the gravitationa
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!