You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight
Answer:
The final velocity of the bullet is 9 m/s.
Explanation:
We have,
Mass of a bullet is, m = 0.05 kg
Mass of wooden block is, M = 5 kg
Initial speed of bullet, v = 909 m/s
The bullet embeds itself in the block which flies off its stand. Let V is the final velocity of the bullet. The this case, momentum of the system remains conserved. So,

So, the final velocity of the bullet is 9 m/s.
Answer:
n (a neutron)
Explanation:
For a chemical element:
- The lower subscript indicates the atomic number (the number of protons)
- The upper subscript indicates the mass number (the sum of protons and neutrons in the nucleus)
In the reaction described in the problem, we see that a gamma photon hits a nucleus of Calcium-40, which has
Z = 20 (20 protons)
A = 40 (40 protons+neutrons)
Which means that the number of neutrons is n = A - Z = 40 - 20 = 20
After the reaction, we have a nucleus of Calcium-39, which has
Z = 20 (20 protons)
A = 39 (39 protons+neutrons)
Which means that the number of neutrons is n = A - Z = 40 - 39 = 19
So, the nucleus has lost 1 neutron, which is the particle missing in the reaction.
Answer:
145.43 N
Explanation:
Weight is given by (mg)
where m = mass of the body
g = acceleration due to gravity
mass is constant everywhere and is equal to 77.1 kg, both on the earth and on the moon.
But the acceleration due to gravity exerted by the moon near the moon's surface is 16.6% that of Earth,
g(moon) = 0.166 g(earth) = 0.166 × 9.8 = 1.6268 m/s²
Weight on the moon = mg(moon) = (77.1×1.6268) = 125.43 N