Answer:
option B
Explanation:
given,
Force exerted by the hydraulic jack piston = F₁ = 250 N
diameter of piston, d₁ = 0.02 m
r₁ = 0.01 m
diameter of second piston, d₂ = 0.15 m
r₂ = 0.075 m
mass of the jack to lift = ?
now,




F₂ = 14062.5 N
F = m g


m = 1435 Kg
hence, the correct answer is option B
Answer:
Explanation:
The specific heat of gold is 129 J/kgC
It's melting point is 1336 K
It's Heat of fusion is 63000 J/kg
Assuming that the mixture will be solid, the thermal energy to solidify the gold has to be less than that needed to raise the solid gold to the melting point. So,
The first is E1 = 63000 J/kg x 1.5 = 94500 J
the second is E2 = 129 J/kgC x 2 kg x (1336–1000)K = 86688 J
Therefore, all solid is not correct. You will have a mixture of solid and liquid.
For more detail, the difference between E1 and E2 is 7812 J, and that will melt
7812/63000 = 0.124 kg of the solid gold
Answer:

Explanation:
First of all, we need to find the volume of the room, which is given by

Now we can find the mass of the air by using

where
is the density of the air
is the volume of the room
Substituting,

Answer:
a = 4.72 m/s²
Explanation:
given,
mass of the box (m)= 6 Kg
angle of inclination (θ) = 39°
coefficient of kinetic friction (μ) = 0.19
magnitude of acceleration = ?
box is sliding downward so,
F - f = m a
f is the friction force
m g sinθ - μ N = ma
m g sinθ - μ m g cos θ = ma
a = g sinθ - μ g cos θ
a = 9.8 x sin 39° - 0.19 x 9.8 x cos 39°
a = 4.72 m/s²
the magnitude of acceleration of the box down the slope is a = 4.72 m/s²
Answer:
yes independent of the sign or valve of Q
Explanation: