Answer:
(A) 10132.5Pa
(B)531kJ of energy
Explanation:
This is an isothermal process. Assuming ideal gas behaviour then the relation P1V1 = P2V2 holds.
Given
m = 10kg = 10000g, V1 = 0.1m³, V2 = 1.0m³
P1 = 101325Pa. M = 102.03g/mol
P2 = P1 × V1 /V2 = 101325 × 0.1 / 1 = 10132.5Pa
(B) Energy is transfered by the r134a in the form of thw work done in in expansion
W = nRTIn(V2/V1)
n = m / M = 10000/102.03 = 98.01mols
W = 98.01 × 8.314 × 283 ×ln(1.0/0.1)
= 531kJ.
Momentum (p) = mass × velocity
so, 480×40 = 19,200 kg km/hr
so the answer is C !!
Explanation:
It is given that,
The distance between the first spot and the central minimum is, s = 0.007 cm
Length, l = 12 m
Wavelength, 
We need to find the width of the hair. Using the condition of diffraction pattern as :
, d is the width of the hair


d = 0.00102
or

So, the width of the hair is
. Hence, this is the required solution.
The complete and comprehensive solution is attached.
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the block is 
The force constant of the spring is 
The amplitude is 
The time consider is 
Generally the angular velocity of this block is mathematically represented as

=> 
=> 
Given that the block undergoes simple harmonic motion the velocity is mathematically represented as

=> 
=> 