Explanation:
yusef adds all of the values in his data set and then divide by the number of values in the set. the actual density of iron is 7.874 g/ml .
I found the answers here. Hope this helps you! https://1.cdn.edl.io/sJTle6yxt3qVq7jHfdHRZJ3Xogj7ps6swBO9umNcZ6PO3SMN.docx
Answer:
16,18,22
Or
1,3,7
Explanation:
The detailed explanation is contained in the image attached. The lengths are found using Pythagoras theorem and the two lengths reflects the two values of x yielded by the quadratic equation
A) mass m with F1 acting in the positive x direction and F2 acting perpendicular in the positive y direction<span>
m = 5.00 kg
F1=20.0N ... x direction
F2=15.00N</span><span> ... y direction
Net force ^2 = F1^2 + F2^2 = (20N)^2 + (15n)^2 = 625N^2 =>
Net force = √625 = 25N
F = m*a => a = F/m = 25.0 N /5.00 kg = 5 m/s^2
Answer: 5.00 m/s^2
b) mass m with F1 acting in the positive x direction and F2 acting on the object at 60 degrees above the horizontal.
</span>
<span>m = 5.00 kg
F1=20.0N ... x direction
F2=15.00N</span><span> ... 60 degress above x direction
Components of F2
F2,x = F2*cos(60) = 15N / 2 = 7.5N
F2, y = F2*sin(60) = 15N* 0.866 = 12.99 N ≈ 13 N
Total force in x = F1 + F2,x = 20.0 N + 7.5 N = 27.5 N
Total force in y = F2,y = 13.0 N
Net force^2 = (27.5N)^2 + (13.0N)^2 = 925.25 N^2 = Net force = √(925.25N^2) =
= 30.42N
a = F /m = 30.42 N / 5.00 kg = 6.08 m/s^2
Answer: 6.08 m/s^2
</span>
Answer:
I = 16 kg*m²
Explanation:
Newton's second law for rotation
τ = I * α Formula (1)
where:
τ : It is the moment applied to the body. (Nxm)
I : it is the moment of inertia of the body with respect to the axis of rotation (kg*m²)
α : It is angular acceleration. (rad/s²)
Kinematics of the wheel
Equation of circular motion uniformly accelerated :
ωf = ω₀+ α*t Formula (2)
Where:
α : Angular acceleration (rad/s²)
ω₀ : Initial angular speed ( rad/s)
ωf : Final angular speed ( rad
t : time interval (rad)
Data
ω₀ = 0
ωf = 1.2 rad/s
t = 2 s
Angular acceleration of the wheel
We replace data in the formula (2):
ωf = ω₀+ α*t
1.2= 0+ α*(2)
α*(2) = 1.2
α = 1.2 / 2
α = 0.6 rad/s²
Magnitude of the net torque (τ )
τ = F *R
Where:
F = tangential force (N)
R = radio (m)
τ = 80 N *0.12 m
τ = 9.6 N *m
Rotational inertia of the wheel
We replace data in the formula (1):
τ = I * α
9.6 = I *(0.6
)
I = 9.6 / (0.6
)
I = 16 kg*m²