answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inga [223]
2 years ago
6

a falling skydiver slows from a speed of 52 m/s to 8 m/s in 0.8 sec as the parachute opens. what is the diver's acceleration and

the displacement ?
Physics
1 answer:
Cloud [144]2 years ago
8 0
I found the answers here. Hope this helps you! https://1.cdn.edl.io/sJTle6yxt3qVq7jHfdHRZJ3Xogj7ps6swBO9umNcZ6PO3SMN.docx
You might be interested in
How much heat Q1 is transferred by 25.0 g of water onto the skin? To compare this to the result in the previous part, continue t
hodyreva [135]

Answer:

The heat transferred  from water to skin  is 6913.5 J.

Explanation:

Given that,

Weight of water = 25.0 g

Suppose that water and steam, initially at 100°C, are cooled down to skin temperature, 34°C, when they come in contact with your skin. Assume that the steam condenses extremely fast. We will further assume a constant specific heat capacity c=4190 J/(kg°K) for both liquid water and steam.

We need to calculate the heat transferred  from water to skin

Using formula for stream

Q=mc\Delta T

Put the value into the formula

Q=25\times10^{-3}\times4190\times(373-307)

Q=6913.5\ J

Hence, The heat transferred  from water to skin  is 6913.5 J.

3 0
2 years ago
Calculate the wavelength of a neutron that has a velocity of 200. cm/s. (the mass of a neutron = 1.675 × 10–27 kg and h = 6.63 ×
Licemer1 [7]
<span>To find the wavelength of a neutron can be calculated by using the formula Wavelength=h/m x v Where h is planck's constant m=mass of neutron v= velocity of the particle By substituting the given values Wavelength= 6.63 × 10–34 j s / 1.675 × 10–27 kg x 2 m/s^-1 Wavelength of a neutron=1.979 x 10^-7 m</span>
6 0
2 years ago
Read 2 more answers
You place a 500 g block of an unknown substance in an insulated container filled 2 kg of water. The block has an initial tempera
Nina [5.8K]

Answer:

3349J/kgC

Explanation:

Questions like these are properly handled having this fact in mind;

  • Heat loss = Heat gained

Quantity of heat = mcΔ∅

m = mass of subatance

c = specific heat capacity

Δ∅ = change in temperature

m₁c₁(∅₂-∅₁) = m₂c₂(∅₁-∅₃)

m₁ = mass of block = 500g = 0.5kg

c₁  = specific heat capacity of unknown substance

∅₂ = block initial temperature = 50oC

∅₁ = equilibrium temperature of block and water after mix= 25oC

m₂= mass of water = 2kg

c₂ = specific heat capacity of water = 4186J/kg C

∅₃ = intial temperature of water = 20oC

0.5c₁(50-25) = 2 x 4186(25-20)

And we can find c₁ which is the unknown specific heat capacity

c₁ = \frac{2*4186*5}{0.5*25}= 3348.8J/kg C≅ 3349J/kg C

4 0
1 year ago
Kevin is a black high school senior. While walking home from a sporting event at school, he sees a police car and decides to tak
RSB [31]

Answer:

Ethnomethodology theory

Explanation:

Take note of the fact that we are told Kevin worries that the police will stop and question him even though he has not done anything wrong.

This statement shows us that Kevin already understood his society from past experiences, and thus he tries to avoid social interactions with particular member of his society (the police) who may be show discrimination towards him.

4 0
1 year ago
One species of eucalyptus tree, Eucalyptus regnans, grow to heights similar to those attained by California redwoods. Suppose a
mote1985 [20]

Answer:

The tree is 143.325 meters tall

Explanation:

The given parameters of the eucalyptus tree are;

The mass of the eucalyptus tree nut = 1.7 ounces

The speed of the nut at 50.3 m above the ground, v = 42.7 m/s

The equation for free fall is given as follows;

v² = 2·g·h

Where;

v = The velocity after falling through a height, h

g = The acceleration due to gravity = 9.8 m/s²

h = The height through which the seed has already fallen

Therefore, we have;

h = v²/(2·g) = (42.7 m/s)²/(2 × 9.8 m/s²) = 93.025 m

The height through which the seed has already fallen, h = 93.025 m

The height of the tree = h + The height of the seed above ground at the moment it was falling at 42.7 m/s

The height of the tree = 93.025 m + 50.3 m = 143.325 m

The height of the tree = 143.325 m.

4 0
1 year ago
Other questions:
  • The descriptions below explain two ways that water is used by plants on a sunny day. I. In a process called transpiration, some
    12·2 answers
  • Angelina jumps off a stool. As she is falling, the Earth’s gravitational force on her is larger in magnitude than the gravitatio
    15·2 answers
  • Wrapping paper is being unwrapped from a 5.0-cm radius tube, free to rotate on its axis. if it is pulled at the constant rate of
    13·1 answer
  • One of the dangers of tornados and hurricanes is the rapid drop in air pressure that is associated with such storms. Assume that
    6·1 answer
  • A 2 kg object released from rest at the top of a tall cliff reaches a terminal speed of 37.5 m/s after it has fallen a height of
    13·1 answer
  • In Michael Johnson's world-record 400 m sprint, he ran the first 100 m in 11.20 s; then he reached the 200 m mark after a total
    12·1 answer
  • At the normal boiling temperature of iron, TB = 3330 K, the rate of change of the vapor pressure of liquid iron with temperature
    16·2 answers
  • An amusement park ride consists of airplane-shaped cars attached to steel rods. Each rod has a length of 15m and a cross-section
    6·1 answer
  • An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
    13·1 answer
  • What is (Fnet3)x, the x-component of the net force exerted by these two charges on a third charge q3 = 55.0 nC placed between q1
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!