answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inga [223]
2 years ago
6

a falling skydiver slows from a speed of 52 m/s to 8 m/s in 0.8 sec as the parachute opens. what is the diver's acceleration and

the displacement ?
Physics
1 answer:
Cloud [144]2 years ago
8 0
I found the answers here. Hope this helps you! https://1.cdn.edl.io/sJTle6yxt3qVq7jHfdHRZJ3Xogj7ps6swBO9umNcZ6PO3SMN.docx
You might be interested in
Now suppose the initial velocity of the train is 4 m/s and the hill is 4 meters tall. If the train has a mass of 30000 kg, what
hoa [83]

Answer:

<h2>187,500N/m</h2>

Explanation:

From the question, the kinectic energy of the train will be equal to the energy stored in the spring.

Kinetic energy = 1/2 mv² and energy stored in a spring E = 1/2 ke².

Equating both we will have;

1/2 mv² = 1/2ke²

mv² = ke²

m is the mass of the train

v is the velocity of then train

k is the spring constant

e is the extension caused by the spring.

Given m = 30000kg, v = 4 m/s, e = 4 - 2.4 = 1.6m

Substituting this values into the formula will give;

30000*4² =  k*1.6²

k = \frac{30,000*16}{1.6^2}\\ \\k = \frac{480,000}{2.56}\\ \\k = 187,500Nm^{-1}

The value of the spring constant is 187,500N/m

7 0
2 years ago
(Double points) A machine receives electricity that enables it to deliver a total of 8,542 N of force for the completion of its
storchak [24]

Answer: machine's efficiency = 82.2%

Explanation:

Efficiency of a machine is the capability of a machine to convert input to output without waste.

It can be expressed as

Efficiency = output/ input × 100%

Output = 7,023N

Imput = 8,542N

Efficiency = 7,023N/8,542N × 100%

Efficiency = 82.2%

4 0
2 years ago
A.Whale communication. Blue whales apparently communicate with each other using sound of frequency 17.0 Hz, which can be heard n
Y_Kistochka [10]

A. 90.1 m

The wavelength of a wave is given by:

\lambda=\frac{v}{f}

where

v is the speed of the wave

f is its frequency

For the sound emitted by the whale, v = 1531 m/s and f = 17.0 Hz, so the wavelength is

\lambda=\frac{1531 m/s}{17.0 Hz}=90.1 m

B. 102 kHz

We can re-arrange the same equation used previously to solve for the frequency, f:

f=\frac{v}{\lambda}

where for the dolphin:

v = 1531 m/s is the wave speed

\lambda=1.50 cm=0.015 m is the wavelength

Substituting into the equation,

f=\frac{1531 m/s}{0.015 m}=1.02 \cdot 10^5 Hz=102 kHz

C. 13.6 m

Again, the wavelength is given by:

\lambda=\frac{v}{f}

where

v = 340 m/s is the speed of sound in air

f = 25.0 Hz is the frequency of the whistle

Substituting into the equation,

\lambda=\frac{340 m/s}{25.0 Hz}=13.6 m

D. 4.4-8.7 m

Using again the same formula, and using again the speed of sound in air (v=340 m/s), we have:

- Wavelength corresponding to the minimum frequency (f=39.0 Hz):

\lambda=\frac{340 m/s}{39.0 Hz}=8.7 m

- Wavelength corresponding to the maximum frequency (f=78.0 Hz):

\lambda=\frac{340 m/s}{78.0 Hz}=4.4 m

So the range of wavelength is 4.4-8.7 m.

E. 6.2 MHz

In order to have a sharp image, the wavelength of the ultrasound must be 1/4 of the size of the tumor, so

\lambda=\frac{1}{4}(1.00 mm)=0.25 mm=2.5\cdot 10^{-4} m

And since the speed of the sound wave is

v = 1550 m/s

The frequency will be

f=\frac{v}{\lambda}=\frac{1550 m/s}{2.5\cdot 10^{-4} m}=6.2\cdot 10^6 Hz=6.2 MHz

3 0
2 years ago
To start the analysis of this circuit you must write energy conservation (loop) equations. Each equation must involve a round-tr
REY [17]

Answer:

Explanation:

Electric field talks about a region around a charged particle or object within which a force would be exerted on other charged particles or objects. to find the electric field inside the bulb we will apply the electric filed formula.

Please kindly check attachment for step by step explaination.

6 0
2 years ago
Taylor places a nail on a bar magnet. The nail sticks to the magnet when lifted up off the table. She touches a paperclip to the
Ratling [72]
Prior to touching the bar magnet, the magnetic domains in the nail were pointing in random directions. When Taylor touched the nail to the bar magnet the magnetic fields of the magnetic domains aligned and it became a temporary magnet.
5 0
2 years ago
Read 2 more answers
Other questions:
  • According to Newton’s law of universal gravitation, which statements are true?
    10·2 answers
  • A quantum system has three energy levels, so three wavelengths appear in its emission spectrum. the shortest observed wavelength
    7·1 answer
  • Liz puts a 1 kg weight and a 10 kg on identical sleds. She then applies a 10N force to each sled. Describe why the smaller weigh
    14·2 answers
  • Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar. In a survey conduc
    14·1 answer
  • A baking dish is removed from a hot oven and placed on a cooling rack. As the dish cools down to 35 C from 175 C, its net radian
    7·1 answer
  • A 128.0-N carton is pulled up a frictionless baggage ramp inclined at 30.0∘above the horizontal by a rope exerting a 72.0-N pull
    5·1 answer
  • A body of mass 8 kg moves in a (counterclockwise) circular path of radius 10 meters, making one revolution every 10 seconds. You
    7·1 answer
  • You toss a conductive open ring of diameter d = 1.75 cm up in the air. The ring is flipping around a horizontal axis at a rate o
    15·1 answer
  • At what location in the refrigerator is the most thermal energy removed?
    12·1 answer
  • Because of your knowledge of physics, you have been hired as a consultant for a new James Bond movie, "Oldfinger". In one scene,
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!