If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
I could be wrong, but I'm pretty sure it's 144kg.
Answer:
a = 18.28 ft/s²
Explanation:
given,
time of force application, t= 10 s
Work = 10 Btu
mass of the object = 15 lb
acceleration, a = ? ft/s²
1 btu = 778.15 ft.lbf
10 btu = 7781.5 ft.lbf

m = 0.466 slug
now,
work done is equal to change in kinetic energy

now, acceleration of object


a = 18.28 ft/s²
constant acceleration of the object is equal to 18.28 ft/s²
<span><span>Use the periodic table and your knowledge of isotopes to complete these statements.
When polonium-210 emits an alpha particle, the child isotope has an atomic mass of </span><span> ⇒ 206</span>.</span>
<span><span>I-131 undergoes beta-minus decay. The chemical symbol for the new element is </span><span> ⇒ Xe</span>.</span>
<span><span>Fluorine-18 undergoes beta-plus decay. The child isotope has an atomic mass of </span><span> ⇒ 18</span>.</span>
Answer:
1848.15J
Explanation:
KE =1/2 mv^2
Mass = 60kg, velocity =40km/h =11.11m/s
Hence
KE =30 x(11.1)^2 /2 = 1848.15J