I don't understand what you mean by "depth" of the steps. The flat part of the step has a front-to-back dimension, and the 'riser' has a height. I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy. And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground. So something is definitely fishy about the steps.
Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.
In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters. The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>
Answer:
The graphs are attached
Explanation:
We are told that he starts with a constant speed of 25 m/s for a distance of 100 m.
At constant velocity, v = distance/time
time(t) = distance(d)/velocity(v)
t1 = 100/25
t1 = 4 s
Now, we are told that he applies his brakes and accelerates uniformly to a stop just as he reaches a wall 50m away.
It means, he decelerate and final velocity is zero.
Thus;
v² = u² + 2as
0² = 25² + 2a(50)
25² = - 100a
625 = - 100a
a = - 625/100
a = - 6.25 m/s²
v = u + at
0 = 25 + (-6.25t)
25 = 6.25t
t = 25/6.25
t = 4 s
With the values gotten, kindly find attached the distance-time and velocity-time graphs.
Answer:
R₂ / R₁ = D / L
Explanation:
The resistance of a metal is
R = ρ L / A
Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section
We apply this formal to both configurations
Small face measurements (W W)
The length is
L = W
Area
A = W W = W²
R₁ = ρ W / W² = ρ / W
Large face measurements (D L)
Length L = D= 2W
Area A = W L
R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L
The relationship is
R₂ / R₁ = 2W²/L
Answer:
T = 570 N
Explanation:
Given that,
The gravitational force acting on a bucket of water = 525 N
Net force in the Y direction is 45 N
We need to find the magnitude of the force of tension. It can be calculated as :
45 = T - 525
T = 525 + 45
T = 570 N
Hence, the force of tension is 570 N.
Archaeological evidence shows that Egyptians worked together to build the pyramids. Remains of quarries and ancient tools suggest that large slabs were created from rock beds. The slabs were placed on sleds and pulled to the building site. To make this process easier, men most likely poured oil on the roadway. This process is depicted in tomb paintings that date back to 1900 BCE.