answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
2 years ago
6

The value of gravitational acceleration of a body on Earth is 9.8 meters/second2. The gravitational potential energy for a 1.00

kilogram
object is found to be 12.5 joules. How high is this object above the ground level, where PE = 0?
O A. 1.3 meters
OB. 3.5 meters
OC. 2.0 meters
OD. 5.6 meters
O E. 7.9 meters
Physics
1 answer:
ANTONII [103]2 years ago
5 0

Answer:

A

Explanation:

i don't know but u think the answer is A

You might be interested in
The block in the diagram below is AT REST. However, the tension in the cable is not the only thing holding the block back. Stati
Vedmedyk [2.9K]

Answer:

The  tension in the rope is 229.37 N.

Explanation:

Given:

Mass of the block is, m=33.2\ kg

Coefficient of static friction is, \mu = 0.214

Angle of inclination is, \theta = 31.5°

Draw a free body diagram of the block.

From the free body diagram, consider the forces in the vertical direction perpendicular to inclined plane.

Forces acting are mg\cos \theta and normal N. Now, there is no motion in the direction perpendicular to the inclined plane. So,

N=mg\cos \theta\\N=(33.2)(9.8)\cos (31.5)\\N=277.415\ N

Consider the direction along the inclined plane.

The forces acting along the plane are mg\sin \theta and frictional force, f, down the plane and tension, T, up the plane.

Now, as the block is at rest, so net force along the plane is also zero.

T=mg\sin \theta+f\\T=mg\sin \theta +\mu N\\T= (33.2)(9.8)(\sin (31.5)+(0.214\times 277.415)\\T= 170+59.37\\T=229.37\ N

Therefore, the  tension in the rope is 229.37 N.

3 0
1 year ago
You toss a rock of mass m vertically upward. Air resistance can be neglected. The rock reaches a maximum height h above your han
VladimirAG [237]

Answer with Explanation:

We are given that

Mass of rock=m

Maximum height=h

a.At maximum height, velocity,v=0

We know that

v^2=u^2-2gh

0+2gh=u^2

u^2=2gh

Height,h=h/4

Again,v'^2=u^2-2g\times \frac{h}{4}

v'^2=2gh-\frac{gh}{2}=\frac{4gh-gh}{2}=\frac{3gh}{2}

v'=\sqrt{\frac{3gh}{2}}=\sqrt{\frac{3\times 9.8 h}{2}}=3.83\sqrt h

Where g=9.8 m/s^2

b.When height,h=3h/4

v'^2=u^2-2gh

v'^2=2gh-2g\times \frac{3h}{4}=2gh-\frac{3gh}{2}=\frac{4gh-3gh}{2}=\frac{gh}{2}

v'=\sqrt{\frac{9.8h}{2}}=2.2\sqrt h

v'=2.2\sqrt h

4 0
2 years ago
Read 2 more answers
Somewhere in the vast flat tundra of planet Tehar, a projectile is launched from the ground at an angle of 60 degrees. It reache
Nina [5.8K]

Answer:

R = 0.0503 m

Explanation:

This is a projectile launching exercise, to find the range we can use the equation

       R = v₀² sin 2θ / g

How we know the maximum height

      v_{f}² =v_{oy}² - 2 g y

      v_{f}= 0

      v_{oy} = √ 2 g y

      v_{oy} = √ 2 9.8 / 15

      v_{oy} = 1.14 m / s

Let's use trigonometry to find the speed

    sin θ = v_{oy} / vo

    vo = v_{oy} / sin θ

    vo = 1.14 / sin 60

    vo = 1.32 m / s

We calculate the range with the first equation

     R = 1.32² sin(2 60) / 30

    R = 0.0503 m

3 0
1 year ago
A police officer draws a sketch of the scene of an accident, as shown.
iren2701 [21]
I would have to say that it is Y
5 0
2 years ago
Read 2 more answers
A certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of What is the
Alborosie

Answer:

<em>0.45 mm</em>

Explanation:

The complete question is

a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?

A) 0.45 mm

B) 0.63 mm

C.) 0.68 mm

D) 0.91 mm

Current in the fuse is 1.0 A

Current density of the fuse when it melts is 620 A/cm^2

Area of the wire in the fuse = I/ρ

Where I is the current through the fuse

ρ is the current density of the fuse

Area = 1/620 = 1.613 x 10^-3 cm^2

We know that 10000 cm^2 = 1 m^2, therefore,

1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2

Recall that this area of this wire is gotten as

A = \frac{\pi d^{2} }{4}

where d is the diameter of the wire

1.613 x 10^-7 = \frac{3.142* d^{2} }{4}

6.448 x 10^-7 = 3.142 x d^{2}

d^{2} =\sqrt{ 2.05*10^-7}

d = 4.5 x 10^-4 m = <em>0.45 mm</em>

8 0
2 years ago
Other questions:
  • A 2400-kg satellite is in a circular orbit around a planet. the satellite travels with a constant speed of 6670 m/s. the radius
    6·2 answers
  • While it’s impossible to design a perpetual motion machine, that is, a machine that keeps moving forever, come up with ways to k
    12·2 answers
  • Write the meaning of an object has 2 meter length
    15·1 answer
  • What role does a mild electric shock play in Skinner's operant chamber? A. negative reinforcer B. positive reinforcer C. punishe
    6·1 answer
  • Loss of traction between the rear wheels and road surfaces like ice, sand, or gravel results in what is called _______________.
    8·1 answer
  • A boat of mass 250 kg is coasting, with its engine in neutral, through the water at speed 1.00 m/s when it starts to rain with i
    10·1 answer
  • A 3030 cmcm wrench is used to loosen a bolt with a force applied 0.30.3 mm from the bolt. It takes 6060 NN to loosen the bolt wh
    15·1 answer
  • What would happen to the number of home runs a player could hit if the air was removed from above the field? Use your understand
    12·1 answer
  • Which illustration represents the arrangement of particles in a gas?
    6·1 answer
  • Packages having a mass of 6 kgkg slide down a smooth chute and land horizontally with a speed of 3 m/sm/s on the surface of a co
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!