I think the right answer is the first one. If she stops moving her Position does not change any more-and the Graph Shows that after 6 seconds she stays at the Position of 5 m. If she Went Back to the start point the Graph would have Developed Back to 0m(decreased).
Answer:
B will take 1.034 times the time of A from Boston to Hartford.
Explanation:
Let the distance from Boston to Hartford be S.
Person A drives at a constant speed of 55 mph for the entire trip,
Time taken by person A

Person B drives at 65 mph for half the distance and then drives 45 mph for the second half of the distance.
Time taken by person B

Ratio of time of arrival of B to A

B will take 1.034 times the time of A from Boston to Hartford.
Answer:
1.034m/s
Explanation:
We define the two moments to develop the problem. The first before the collision will be determined by the center of velocity mass, while the second by the momentum preservation. Our values are given by,

<em>Part A)</em> We apply the center of mass for velocity in this case, the equation is given by,

Substituting,


Part B)
For the Part B we need to apply conserving momentum equation, this formula is given by,

Where here
is the velocity after the collision.



Answer:
From the relation above we can conclude that the as the distance between the two plate increases the electric field strength decreases
Explanation:
I cannot find any attached photo, but we can proceed anyways theoretically.
The electric field strength (E) at any point in an electric field is the force experienced by a unit positive charge (Q) at that point
i.e

But the force F

But the electric field intensity due to a point charge Q at a distance r meters away is given by

<em>From the relation above we can conclude that the as the distance between the two plate increases the electric field strength decreases</em>
<h2>
Option C is the correct answer.</h2>
Explanation:
We need to find how many calories is 1 BTU.
Given
1 BTU = 1054 J
1 calorie = 4.186 J
So we have
1 BTU = 4.186 x 251.79 J
1 BTU =251.79 calorie
1 BTU = 252 calorie.
Option C is the correct answer.