When the body touches the ground two types of Forces will be generated. The Force product of the weight and the Normal Force. This is basically explained in Newton's third law in which we have that for every action there must also be a reaction. If the Force of the weight is pointing towards the earth, the reaction Force of the block will be opposite, that is, upwards and will be equivalent to its weight:
F = mg
Where,
m = mass
g = Gravitational acceleration
F = 5*9.8
F = 49N
Therefore the correct answer is E.
Answer:
Sample Response: If temperature and surface area increase, then the time it takes for sodium bicarbonate to completely dissolve will decrease, because increasing both factors increases the rate of a chemical reaction.
Explanation:
The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Answer: 9938.8 km
Explanation:
1 pound-force = 4.48 N
30.0 pounds-force = 134.4 N
The force of gravitation between Earth and object on the surface of is given by:

Where M is the mass of the Earth, m is the mass of the object, R (6371 km) is the radius of the Earth.
At height, h above the surface of the Earth, the weight of the object:

we need to find "h"
taking the ratio of two:

Hence, Pete would weigh 30 pounds at 9938.8 km above the surface of the Earth.
Answer:
The frequency of the photon decreases upon scattering
Explanation:
Here we note that when a photon is scattered by a charged particle, it is referred to as Compton scattering.
Compton scattering results in a reduction of the energy of the photon and hence an increase in the wavelength (from λ to λ') of the photon known as Compton effect.
Therefore, since the wavelength increases, we have from
λf = λ'f' = c
f = c/λ
Where:
f and f' = The frequency of the motion of the photon before and after the scattering
c = Speed of light (constant)
We have that the frequency, f, is inversely proportional to the wavelength, λ as follows;
f = c/λ
As λ = increases, and c is constant, f decreases, therefore, the frequency of the photon decreases upon scattering.