Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V
A simple electromagnet consisting of a coil of wire wrapped around an iron core. <u><em>A core of ferromagnetic material like iron serves to increase the magnetic field created.</em></u> The strength of magnetic field generated is proportional to the amount of current through the winding.
your answer is b :)
I LOVE YOUR PROFILE PICTURE!!!
Answer: Neither Sandra nor Marissa will be in her THR zone.
Explanation:
1) Actual pulse of both Sandra and Marissa : 144 bpm
2) Decrease of 20 bpm ⇒ 144 bpm - 20 bpm = 124 bpm
3) Sandra's TRH is in the range 135 - 172 bpm.
Since 124 < 135, she will be below the range.
4) Marissa's TRH range is 143 - 176 bpm.
Since, 124 < 143, she is below the range
In conlusion, neither Sandra nor Marissa will be in her THR zone.
The statements that apply in this case are:
They show the elements that make up a compound.
They show the types of atoms that make up a molecule.
They show the number of each type of atom in a molecule.
Lindsay has to fly this plane towards this direction [W 12.5° S] to get to Hamilton.
From this question, the plane is still up in the air.
We have wind blowing in [W 60° N ]
To solve the problem we have to make use of the sine rule

We put the values in the equation, we have:
50/Sinθ = 200/sin60°
The next step is to cross multiply
50 x sin60° = 200Sinθ
50 x 0.8660 = 200sinθ
We make Sin θ the subject
Sine θ = 43.30/200
sine θ = 0.2165
we find the value of θ
θ = sine⁻¹(0.2165)
θ = 12.50
So Lindsay has to fly this plane towards this direction
[W 12.5° S]
Here is a similar question brainly.com/question/13338067?referrer=searchResults