answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadya [2.5K]
2 years ago
15

A 3.00-kg model airplane has velocity components of 5.00 m/s due east and 8.00 m/s due north. What is the plane’s kinetic energy

?

Physics
2 answers:
GalinKa [24]2 years ago
5 0

Answer:

Kinetic energy, E = 133.38 Joules

Explanation:

It is given that,

Mass of the model airplane, m = 3 kg

Velocity component, v₁ = 5 m/s (due east)

Velocity component, v₂ = 8 m/s (due north)

Let v is the resultant of velocity. It is given by :

v=\sqrt{v_1^2+v_2^2}

v=\sqrt{5^2+8^2}=9.43\ m/s

Let E is the kinetic energy of the plane. It is given by :

E=\dfrac{1}{2}mv^2

E=\dfrac{1}{2}\times 3\ kg\times (9.43\ m/s)^2

E = 133.38 Joules

So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.

serg [7]2 years ago
5 0

The plane’s kinetic energy is about 134 J

\texttt{ }

<h3>Further explanation</h3>

Let's recall the Kinetic Energy formula:

\boxed {E_k = \frac{1}{2}mv^2 }

<em>Ek = kinetic energy ( J )</em>

<em>m = mass of object ( kg )</em>

<em>v = speed of object ( m/s )</em>

Let us now tackle the problem!

\texttt{ }

<u>Given:</u>

mass of model airplane = m = 3.00 kg

velocity component in the east direction = v_x = 5.00 m/s

velocity component in the north direction = v_y = 8.00 m/s

<u>Asked:</u>

kinetic energy of the plane = Ek = ?

<u>Solution:</u>

<em>Firstly , we will find the resultant velocity as follows:</em>

v^2 = (v_x)^2 + (v_y)^2

\texttt{ }

<em>Next, we could calculate the plane's kinetic energy by using following formula:</em>

E_k = \frac{1}{2} m v^2

E_k = \frac{1}{2} m (v_x^2 + v_y^2)

E_k = \frac{1}{2} m v_x^2 + \frac{1}{2} m v_y^2

E_k = (\frac{1}{2} \times 3.00 \times 5.00^2) + (\frac{1}{2} \times 3.00 \times 8.00^2)

E_k = 133.5 \texttt{ J}

E_k \approx 134 \texttt{ J}

\texttt{ }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Energy

You might be interested in
A spelunker (person who explores caves) determines that the cave entrance is located 349 m, 253° from her current position. How
adell [148]
You would have to subtract 253 by 349 and you would get 96.
5 0
2 years ago
The engine in an imaginary sports car can provide constant power to the wheels over a range of speeds from 0 to 70 miles per hou
bekas [8.4K]

Answer:

2.2 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

Converting mph to m/s

29\ mph=29\times 0.44704=12.96\ m/s

58\ mph=58\times 0.44704=25.93\ m/s

v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{12.96-0}{1.1}\\\Rightarrow a=11.78\ m/s^2

Considering this acceleration to be constant

v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{25.93-0}{11.78}\\\Rightarrow t=2.20\ s

Time it would take to go from zero to 58.0 mph is 2.2 seconds

6 0
2 years ago
A long, straight wire carrying a current of 3.45 A moves with a constant speed v to the right. A 5-turn circular coil of diamete
d1i1m1o1n [39]

Answer:

I = 69.3  μA

Explanation:

Current through the straight wire, I = 3.45 A

Number of turns, N = 5 turns

Diameter of the coil, D = 1.25 cm

Resistance of the coil, R = 3.25 \mu ohms

Distance of the wire from the center of the coil, d = 20 cm = 0.2 m

The magnetic field, B₁, when the wire is at a distance, d, from the center of the coil.

B_{1} = \frac{\mu_{0}I }{2\pi d}

B_{1} = \frac{4\pi* 10^{-7}  *3.45 }{2\pi *0.2}\\B_{1} =0.00000345 T

Magnetic field B₂ when the wire is at a distance, 2d from the center of the coil

B_{2} = \frac{\mu_{0}I }{2\pi(2d)) } \\B_{2} = \frac{\mu_{0}I }{4\pi d } \\

B_{2} = \frac{4\pi* 10^{-7}  *3.45 }{2\pi *2*0.2}\\B_{2} = 0.000001725 T

Change in the magnetic field, ΔB = B₂ - B₁ = 0.00001725 - 0.0000345

ΔB = -0.000001725

Induced current, I = \frac{E}{R}

E = -N (Δ∅)/Δt

Δ∅ = A ΔB

Area, A = πr²

diameter, d = 0.0125 m

Radius, r = 0.00625 m

A = π* 0.00625²

A = 0.0001227 m²

Δ∅ =  -0.000001725 * 0.0001227

Δ∅ = -211.6575 * 10⁻¹²

E = -N (Δ∅)/Δt

E = -5\frac{-211.6575 * 10^{-12} }{4.70} \\E = 225.17 * 10^{-12} V

Resistance, R = 3.25 μ ohms = 3.25 * 10⁻⁶ ohms

I = E/R

I = \frac{225.17 * 10^{-12} }{3.25 * 10^{-6} }

I = 0.0000693 A

I = 69 .3 * 10⁻⁶A

I = 69.3  μA

3 0
2 years ago
a torch bulb is rated 2.5V and 750mA. Calculate its power,its resistance and the energy consumed if this bulb lighted for 4 hour
Hatshy [7]
Using Ohm's Law, we can derived from this the value of resistance. If I=V/R, therefore, R = V/I
Substituting the values to the given, 
P = Power = ?
R = Resistance = ?
V = Voltage = 2.5 V
I = Current = 750 mA

R = V/I = 2.5/ (750 x 10^-3)
R = 3.33 ohms

Calculating the power, we have P = IV

P = (750 x 10^-3)(2.5) 
P = 1.875 W

The power consumption is the power consumed multiply by the number of hours. In here, we have;
1.875W x 4 hours = 7.5 watt-hours
3 0
2 years ago
A transition metal complex in solution has an absorption peak at 450 nm, in the blue region of the visible spectrum. What color
Ivan

Answer:

In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).

Explanation:

The portion of UV-visible radiation that is absorbed implies that a portion of electromagnetic radiation is not absorbed by the sample and is therefore transmitted through it and can be captured by the human eye. That is, in the visible region of a complex, the visible color of a solution can be seen and that  corresponds to the wavelengths of light it transmits, not absorbs. The  absorbing color is complementary to the color it transmits.

So, in the attached image you can see the approximate wavelengths with the colors, where they locate the wavelength with the absorbed color, you will be able to observe the complementary color that is seen or reflected.

<u><em> In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).</em></u>

7 0
2 years ago
Other questions:
  • Sam's bike tire contains 15 units of air particles and has a volume of 160mL. Under these conditions the pressure reads 13 psi.
    13·1 answer
  • A girl and boy pull in opposite directions on a stuffed animal. The girl exerts a force of 3.5 N. The mass of the stuffed animal
    13·2 answers
  • HURRY UP PLZZZ Two identical waves are traveling toward each other in the same medium. One has a positive amplitude, meaning tha
    14·2 answers
  • Which of the following substances will show the smallest change in temperature when equal amounts of energy are absorbed?
    7·2 answers
  • A galloping pony speeds past you at 5 m/s. The frequency of the sound produced by the hooves on the dirt is 221 Hz. Assume the s
    14·2 answers
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • Two wires with equal lengths are made of pure copper. The diameter of wire A is three times the diameter of wire B. When 8 kg ma
    7·1 answer
  • The dielectric strength of rutile is 6.0 × 106 V/m, which corresponds to the maximum electric field that the dielectric can sust
    13·2 answers
  • ________ amplitudes are associated with ________ sounds.
    5·1 answer
  • When calculating acceleration, to find the change in velocity, you subtract the ____________________ velocity from the _________
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!