You would have to subtract 253 by 349 and you would get 96.
Answer:
2.2 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Converting mph to m/s



Considering this acceleration to be constant

Time it would take to go from zero to 58.0 mph is 2.2 seconds
Answer:
I = 69.3 μA
Explanation:
Current through the straight wire, I = 3.45 A
Number of turns, N = 5 turns
Diameter of the coil, D = 1.25 cm
Resistance of the coil, 
Distance of the wire from the center of the coil, d = 20 cm = 0.2 m
The magnetic field, B₁, when the wire is at a distance, d, from the center of the coil.

Magnetic field B₂ when the wire is at a distance, 2d from the center of the coil


Change in the magnetic field, ΔB = B₂ - B₁ = 0.00001725 - 0.0000345
ΔB = -0.000001725
Induced current, 
E = -N (Δ∅)/Δt
Δ∅ = A ΔB
Area, A = πr²
diameter, d = 0.0125 m
Radius, r = 0.00625 m
A = π* 0.00625²
A = 0.0001227 m²
Δ∅ = -0.000001725 * 0.0001227
Δ∅ = -211.6575 * 10⁻¹²
E = -N (Δ∅)/Δt

Resistance, R = 3.25 μ ohms = 3.25 * 10⁻⁶ ohms
I = E/R

I = 0.0000693 A
I = 69 .3 * 10⁻⁶A
I = 69.3 μA
Using Ohm's Law, we can derived from this the value of resistance. If I=V/R, therefore, R = V/I
Substituting the values to the given,
P = Power = ?
R = Resistance = ?
V = Voltage = 2.5 V
I = Current = 750 mA
R = V/I = 2.5/ (750 x 10^-3)
R = 3.33 ohms
Calculating the power, we have P = IV
P = (750 x 10^-3)(2.5)
P = 1.875 W
The power consumption is the power consumed multiply by the number of hours. In here, we have;
1.875W x 4 hours = 7.5 watt-hours
Answer:
In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).
Explanation:
The portion of UV-visible radiation that is absorbed implies that a portion of electromagnetic radiation is not absorbed by the sample and is therefore transmitted through it and can be captured by the human eye. That is, in the visible region of a complex, the visible color of a solution can be seen and that corresponds to the wavelengths of light it transmits, not absorbs. The absorbing color is complementary to the color it transmits.
So, in the attached image you can see the approximate wavelengths with the colors, where they locate the wavelength with the absorbed color, you will be able to observe the complementary color that is seen or reflected.
<u><em>
In the case of a solution transition metal complex that has an absorption peak at 450 nm in the blue region of the visible spectrum, the (complementary) color of this solution is orange (option B).</em></u>