Complete question is;
A ski jumper travels down a slope and leaves the ski track moving in the horizontal direction with a speed of 24 m/s. The landing incline below her falls off with a slope of θ = 59◦ . The acceleration of gravity is 9.8 m/s².
What is the magnitude of the relative angle φ with which the ski jumper hits the slope? Answer in units of ◦
Answer:
14.08°
Explanation:
The time covered will be given by the formula;
t = (2V_x•tan θ)/g
t = (2 × 24 × tan 59)/9.8
t = 8.152 s
Now, the slope of the flight path at the point of impact will be given by the formula;
tan α = V_y/V_x
We are given V_x = 24 m/s
V_y will be gotten from the formula;
v = gt
Thus;
V_y = gt
V_y = 9.8 × (8.152) = 78.89 m/s
Thus;
tan α = 78.89/24
tan α = 3.2871
α = tan^(-1) 3.2871
α = 73.08°
Thus ;
Relative angle φ = α - θ = 73.08 - 59 = 14.08°
Answer
Hi,
correct answer is {D} 3.5 m/s²
Explanation
Acceleration is the rate of change of velocity with time. Acceleration can occur when a moving body is speeding up, slowing down or changing direction.
Acceleration is calculated by the equation =change in velocity/change in time
a= {velocity final-velocity initial}/(change in time)
a=v-u/Δt
The units for acceleration is meters per second square m/s²
In this example, initial velocity =2.0m/s⇒u
Final velocity=44.0m/s⇒v
Time taken for change in velocity=12 s⇒Δt
a= (44-2)/12 = 42/12
3.5 m/s²
Best Wishes!
We are given an electromagnetic wave with a frequency of 5.09 x 10^14 Hz and travelling through a transparent medium. If the medium was vacuum, the speed of the wave would be equal to the speed of light. Otherwise, the main factor that would determine the speed of the wave is its wavelength.
Answer:
6 s
Explanation:
given,
Sports car accelerate from 0 to 30 mph in 1.5 s
time taken to accelerate 0 to 60 mph = ?
The power of the engine is independent of velocity and neglecting friction
power =
P = constant
the kinetic energy for 60 mph larger than this of 30 mph
= 
= 
= 
= 4
gain in kinetic energy = P x t
time = 4 x 1.5
= 6 s
Remain the same
Explanation:
If the force exerted by the intern is doubled and the distance is halved, the work done by the intern remains the same.
Work done is the force applied to move a body through a distance.
Work done = F x d
where F is the applied force
d is the distance moved
Now;
if:
f = 2f
d =
d
Input the parameter:
Work done = fxd = 2f x
d = fd
The work done will still remain the same
learn more:
Work done brainly.com/question/9100769
#learnwithBrainly