answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saw5 [17]
2 years ago
6

An amusement park ride consists of airplane-shaped cars attached to steel rods. Each rod has a length of 15m and a cross-section

al area 8.00cm^2. Take Young's modulus for steel to be Y= 2.0 x 10^11 Pa.
How much is the rod stretched (change in length of) when the ride is at rest? Assume that each car with two people seated in it has a total weight of 1900 N.
Physics
1 answer:
Oliga [24]2 years ago
7 0

Explanation:

Given that,

Length of each rod, L = 15 m

Area of cross section of the rod, A=8\ cm^2=0.0008\ m^2

Young's modulus for steel, Y=2\times 10^{11}\ Pa

Total weight of two people, F = 1900 N

We need to find the stretching in the rod when the ride is at rest. The formula of Young's modulus of a material is given by :

Y=\dfrac{FL}{A\Delta L}

Here, \Delta L is the stretching in the rod

\Delta L=\dfrac{FL}{YA}\\\\\Delta L=\dfrac{1900\times 15}{2\times 10^{11}\times 0.0008}\\\\\Delta L=1.78\times 10^{-4}\ m

So, the rod will stretched to 1.78\times 10^{-4}\ m

You might be interested in
A ladybug starts at the center of a 16.0 in .-diameter turntable and crawls in a straight radial line to the edge. While this is
mafiozo [28]
The problem is about magnitude of the displacement vector of the lady bug and its directions. so the magnitude of the displacement of the lady bug is 16 in / 2 because it started from the center so the magnitude is 8 in. and the direction is the rotation of the turn table which is 60 degrees
3 0
2 years ago
You are working as an assistant to an air-traffic controller at the local airport, from which small airplanes take off and land.
Alika [10]

Answer:

d = 2021.6 km

Explanation:

We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them

Airplane 1

Height   y₁ = 800m

Angle θ = 25°

           cos 25 = x / r

           sin 25 = z / r

           x₁ = r cos 20

           z₁ = r sin 25

          x₁ = 18 103 cos 25 = 16,314 103 m = 16314 m

          z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m

2 plane

Height   y₂ = 1100 m

Angle θ = 20°

          x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m

          z₂ = 20 103 without 25 = 8.452 103 m = 8452 m

The distance between the planes using the Pythagorean Theorem is

         d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2

Let's calculate

        d² = (18126-16314)²  + (1100-800)² + (8452-7607)²

        d² = 3,283 106 +9 104 + 7,140 105

        d² = (328.3 + 9 + 71.40) 10⁴

        d = √(408.7 10⁴)

        d = 20,216 10² m

        d = 2021.6 km

7 0
2 years ago
A 225 kg red bumper car is moving at 3.0 m/s. It hits a stationary 180 kg blue bumper car. The red and blue bumper cars combine
Alex Ar [27]

Given


m1(mass of red bumper): 225 Kg


m2 (mass of blue bumper): 180 Kg


m3(mass of green bumper):150 Kg


v1 (velocity of red bumper): 3.0 m/s


v2 (final velocity of the combined bumpers): ?




The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:


Pa= Pb


Where Pa is the momentum before collision and Pb is the momentum after collision.


Now applying this law for the above problem we get


Momentum before collision= momentum after collision.


Momentum before collision = (m1+m2) x v1 =(225+180)x 3 = 1215 Kgm/s


Momentum after collision = (m1+m2+m3) x v2 =(225+180+150)x v2

=555v2

Now we know that Momentum before collision= momentum after collision.


Hence we get


1215 = 555 v2


v2 = 2.188 m/s


Hence the velocity of the combined bumper cars is 2.188 m/s

4 0
2 years ago
Read 2 more answers
You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af
djyliett [7]
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.
A: mgh_1+\frac{mv_1^2}{2}
Then, while the car is traveling down the track it loses some of its initial energy due to friction:
W_f=F_f\cdot L
So, we know that the car is approaching the point B with the following amount of energy:
mgh_1+\frac{mv_1^2}{2}- F_fL
The law of conservation of energy tells us that this energy must the same as the energy at point B. 
The energy at point B is the sum of car's kinetic and potential energy:
B: mgh_2+\frac{mv_2}{2}
As said before this energy must be the same as the energy of a car approaching the loop:
mgh_2+\frac{mv_2}{2}=mgh_1+\frac{mv_1^2}{2}- F_fL
Now we solve the equation for v_1:
v_1^2=2g(h_2-h_1)+v_2^2+\frac{2F_fL}{m}\\
v_1^2=39.23\\
v_1=\sqrt{39.23}=6.26\frac{m}{s}

4 0
2 years ago
Read 2 more answers
A cylindrical rod of steel (E = 207 GPa, 30 × 10 6 psi) having a yield strength of 310 MPa (45,000 psi) is to be subjected to a
Yanka [14]

Answer:

Diameter of the cylinder will be d=2.998\times 10^4m

Explanation:

We have given young's modulus of steel E=207GPa=207\times 10^9Pa  

Change in length \Delta l=0.38mm

Length of rod l=500mm

Load F = 11100 KN

Strain is given by strain=\frac{\Delta l}{l}=\frac{0.38}{500}=7.6\times 10^{-4}

We know that young's modulus E=\frac{stress}{strain}

So 207\times 10^9=\frac{stress}{7.6\times 10^{-4}}

stress=1573.2\times 10^{-5}N/m^2

We know that stress =\frac{force}{artea }

So 1573.2\times 10^{-5}=\frac{11100\times 1000}{area}

area=7.055\times 10^{8}m^2

So \frac{\pi }{4}d^2=7.055\times 10^{8}

d=2.998\times 10^4m          

6 0
2 years ago
Other questions:
  • The first man-made satellite, Sputnik 1, was launched into space in 1957. This satellite was used to study the conditions found
    10·2 answers
  • A roller coaster travels 200 feet horizontally and then rises 135 feet at an angle of 30 degrees above the ground. What is the m
    7·1 answer
  • On an ice skating rink, a girl of mass 50 kg stands stationary, face to face with a boy of mass 80 kg. The children push off of
    15·2 answers
  • Water is pumped from a lower reservoir to a higher reservoir by a pump that provides 20 kW of shaft power. The free surface of t
    8·1 answer
  • The gravitational force between Pluto and Charon is 3.61 × 1018 N. Pluto has a mass of 1.3 × 1022 kg, which is only slightly gre
    5·2 answers
  • A 3.00-kg ball swings rapidly in a complete vertical circle of radius 2.00 m by a light string that is fixed at one end. The bal
    5·1 answer
  • In the vertical jump, an Kobe Bryant starts from a crouch and jumps upward to reach as high as possible. Even the best athletes
    10·1 answer
  • A 50-kg meteorite moving at 1000 m/s strikes Earth. Assume the velocity is along the line joining Earth's center of mass and the
    13·1 answer
  • A rigid, uniform bar with mass mmm and length bbb rotates about the axis passing through the midpoint of the bar perpendicular t
    10·1 answer
  • For a machine with 35-cm -diameter wheels, what rotational frequency (in rpm) do the wheels need to pitch a 85 mph fastball?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!