answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Phoenix [80]
1 year ago
8

Charge q1 is distance r from a positive point charge Q. Charge q2=q1/3 is distance 2r from Q. What is the ratio U1/U2 of their p

otential energies due to their interactions with Q?
Charge q1 is distance s from the negative plate of a parallel-plate capacitor. Charge q2=q1/3 is distance 2s from the negative plate. What is the ratio U1/U2 of their potential energies?

Physics
1 answer:
worty [1.4K]1 year ago
7 0

We have that The ratio U1/U2 of their potential energies due to their interactions with Q is

  • U1/U2=6
  • U1/U2=6

From the question we are told that

Question 1

Charge q1 is distance r from a positive point charge Q.

Question 2

Charge q2=q1/3 is distance 2r from Q.

Charge q1 is distance s from the negative plate of a parallel-plate capacitor.

Charge q2=q1/3 is distance 2s from the negative plate.

Generally the equation for the potential energy  is mathematically given as

U=\frac{-k*qQ}{r}

Therefore

The Equations of U1 and U2 is

For U1

U1=\frac{-k*q_1Q}{r}

For U2

U2=\frac{-k*q_1Q}{3*2r}

Since

U is a function of q and  q2=q1/3

Therefore

U1/U2=6

For Question 2

For U1

U1=\frac{-k*q_1Q}{s}\\\\For U2\\\\U2=\frac{-k*q_1Q}{3*2r}

Therefore

U1/U2=6

For more information on this visit

brainly.com/question/23379286?referrer=searchResults

You might be interested in
A pendulum is used in a large clock. The pendulum has a mass of 2kg. If the pendulum is moving at a speed of 2.9 m/s when it rea
Vanyuwa [196]
You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight

3 0
2 years ago
Read 2 more answers
A merry-go-round with a a radius of R = 1.63 m and moment of inertia I = 196 kg-m2 is spinning with an initial angular speed of
kondor19780726 [428]

Answer:

1) L = 299.88 kg-m²/s

2) L = 613.2 kg-m²/s

3) L = 499.758 kg-m²/s

4) ω₁ = 0.769 rad/s

5) Fc = 70.3686 N

6) v = 1.2535 m/s

7) ω₀ = 1.53 rad/s

Explanation:

Given

R = 1.63 m

I₀ = 196 kg-m²

ω₀ = 1.53 rad/s

m = 73 kg

v = 4.2 m/s

1) What is the magnitude of the initial angular momentum of the merry-go-round?

We use the equation

L = I₀*ω₀ = 196 kg-m²*1.53 rad/s = 299.88 kg-m²/s

2) What is the magnitude of the angular momentum of the person 2 meters before she jumps on the merry-go-round?

We use the equation

L = m*v*Rp = 73 kg*4.2 m/s*2.00 m = 613.2 kg-m²/s

3) What is the magnitude of the angular momentum of the person just before she jumps on to the merry-go-round?

We use the equation

L = m*v*R = 73 kg*4.2 m/s*1.63 m = 499.758 kg-m²/s

4) What is the angular speed of the merry-go-round after the person jumps on?

We can apply The Principle of Conservation of Angular Momentum

L in = L fin

⇒ I₀*ω₀ = I₁*ω₁

where

I₁ = I₀ + m*R²

⇒  I₀*ω₀ = (I₀ + m*R²)*ω₁

Now, we can get ω₁

⇒  ω₁ = I₀*ω₀ / (I₀ + m*R²)

⇒  ω₁ = 196 kg-m²*1.53 rad/s / (196 kg-m² + 73 kg*(1.63 m)²)

⇒  ω₁ = 0.769 rad/s

5) Once the merry-go-round travels at this new angular speed, with what force does the person need to hold on?

We have to get the centripetal force as follows

Fc = m*ω²*R  

⇒  Fc = 73 kg*(0.769 rad/s)²*1.63 m = 70.3686 N

6) Once the person gets half way around, they decide to simply let go of the merry-go-round to exit the ride.

What is the linear velocity of the person right as they leave the merry-go-round?

we can use the equation

v = ω₁*R = 0.769 rad/s*1.63 m = 1.2535 m/s

7) What is the angular speed of the merry-go-round after the person lets go?

ω₀ = 1.53 rad/s

It comes back to its initial angular speed

8 0
2 years ago
What principles of science (like facts, laws, and theories) might help explain why similar investigations conducted in many part
natulia [17]

Answer:

Reproducibility of research

Explanation:

The principle of science that explains why similar experimental investigations conducted in different parts of the world could result in the same outcome is referred to as reproducibility.

<em>A good research or experiment in science must be reproducible, otherwise, the outcome of such an experiment might become inadmissible within the scientific community. It is a core principle of the scientific method that similar results should be obtained when an experiment or observational study conducted in one place is repeated in another place with the same procedure. Hence, an experiment must be reproducible in science in order for the outcome of such an experiment to be part of the general scientific knowledge. </em>

7 0
1 year ago
The deuterium nucleus starts out with a kinetic energy of 1.24 × 10-13 joules, and the proton starts out with a kinetic energy o
MrMuchimi

Answer:

The total kinetic energy of both particles is 2.43\times10^{-13}

Explanation:

Given that,

Kinetic energy of nucleusK.E= 1.24\times10^{-13}\ J

Kinetic energy of proton K.E= 2.47\times10^{-13}\ J

Radius of proton r= 0.9\times10^{-15}\ m

We need to calculate the final potential energy

Using formula of final potential energy

U=\dfrac{kq^2}{r}

Put the value into the formula

U_{f}=\dfrac{9\times10^{9}\times(1.6\times10^{-19})^2}{2\times0.9\times10^{-15}}

U_{f}=1.28\times10^{-13}\ J

We need to calculate the initial energy of both the particles

Using formula of energy

E_{i}=(K.E_{n}+K.E_{p})+U_{i}

E_{i}=1.24\times10^{-13}+2.47\times10^{-13}+0

E_{i}=3.71\times10^{-13}\ J

We need to calculate the total kinetic energy of both particles

Using conservation of energy

E_{i}=E_{f}

E_{i}=K.E_{f}+U_{f}

3.71\times10^{-13}=K.E_{f}+1.28\times10^{-13}

K.E_{f}=3.71\times10^{-13}-1.28\times10^{-13}

K.E_{f}=2.43\times10^{-13}

Hence, The total kinetic energy of both particles is 2.43\times10^{-13}

3 0
1 year ago
When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportional t
antoniya [11.8K]

Answer:

Intensity of beam 18 feet below the surface is about 0.02%

Explanation:

Using Lambert's law

Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium

then dI / I = kdt

taking log,

ln(I) = kt + ln C

I = Ce^kt

t=0=>I=I(0)=>C=I(0)

I = I(0)e^kt

t=3 & I=0.25I(0)=>0.25=e^3k

k = ln(0.25)/3

k = -1.386/3

k = -0.4621

I = I(0)e^(-0.4621t)

I(18) = I(0)e^(-0.4621*18)

I(18) = 0.00024413I(0)

Intensity of beam 18 feet below the surface is about 0.2%

3 0
1 year ago
Other questions:
  • Which sequence correctly shows how stars form?
    8·2 answers
  • A(n) ________ has charge but negligible mass, whereas a(n) ________ has mass but no charge.
    10·2 answers
  • A power drill runs at a voltage of 120 V and draws a current of 4 A. What is the wattage of the drill?
    11·1 answer
  • A certain slide projector has a 100 mm focal length lens. How far away is the screen, if a slide is placed 103 mm from the lens
    6·1 answer
  • The helicopter in the drawing is moving horizontally to the right at a constant velocity. The weight of the helicopter is W=4900
    5·1 answer
  • In which atmosphere layer does 80 percent of the gas in the atmosphere<br> reside?
    13·2 answers
  • The fundamental frequency of a resonating pipe is 150 Hz, and the next higher resonant frequencies are 300 Hz and 450 Hz. From t
    11·1 answer
  • An object is moving back and forth on the x-axis according to the equation x(t) = 3sin(20πt), t&gt; 0, where x(t) is measured in
    5·1 answer
  • What results when energy is transformed while juggling three bowling pins?
    13·1 answer
  • Which ramp requires the least amount of force?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!