Answer: Change in ball's momentum is 1.5 kg-m/s.
Explanation: It is given that,
Mass of the ball, m = 0.15 kg
Speed before the impact, u = 6.5 m/s
Speed after the impact, v = -3.5 m/s (as it will rebound)
We need to find the change in the magnitude of the ball's momentum. It is given by :
So, the change in the ball's momentum is 1.5 kg-m/s. Hence, this is the required solution.
Read more on Brainly.com - brainly.com/question/12946012#readmore
Answer:
the internal energy of the gas is 433089.52 J
Explanation:
let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.
the internal energy of an ideal gas is given by:
Ein = 3/2×n×R×T
= 3/2×(5.3)×(8.31451)×(24 + 273)
= 433089.52 J
Therefore, the internal energy of this gas is 433089.52 J.
Your basically breaking the sound beerier <span />
Answer:
35 288 mile/sec
Explanation:
This is a problem of special relativity. The clocks start when the spaceship passes Earth with a velocity v, relative to the earth. So, out and back from the earth it will take:

If we use the Lorentz factor, then, as observed by the crew of the ship, the arrival time will be:

Then the amount of time wil expressed as a reciprocal of the Lorentz factor. Thus:


solving for v, gives = 35 288 miles/s