answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lapatulllka [165]
2 years ago
7

A container of volume 0.6 m^3 contains 5.3 mol of argon gas at 24°C. Assuming argon behaves as an ideal gas, find the total inte

rnal energy of this gas. The value of the gas constant is 8.31451 J/mol * K. Answer in units of J.
Physics
1 answer:
Vitek1552 [10]2 years ago
5 0

Answer:

the internal energy of the gas is 433089.52 J

Explanation:

let n be the number of moles, R be the gas constant and T be the temperature in Kelvins.

the internal energy of an ideal gas is given by:

Ein = 3/2×n×R×T

     = 3/2×(5.3)×(8.31451)×(24 + 273)

     = 433089.52 J

Therefore, the internal energy of this gas is 433089.52 J.

You might be interested in
A ball with an initial velocity of 2 m/s rolls for a period of 3 seconds. If the ball is uniformly accelerating at a rate of 3 m
ikadub [295]

Answer: 11 m/s

vinitial=2 m/s

time=3 s

acceleration = 3 m/s^2

vfinal = ?

The key here is that it is a constant acceleration, so we can use the constant acceleration equations. The easiest one to use would be:

vfinal=vinitial + a*t

We need vfinal, so algebraically we are ready to put in numbers into the equation:

vfinal=vinitial + a*t = 2 m/s + (3 m/s^2)*(3 s ) = 11 m/s is the final velocity

7 0
1 year ago
A mover pushes a 255 kg piano
faust18 [17]

Answer:

0.495 ms^{-2}

Explanation:

According to the newton's second law of motion we can apply F=ma hear

Force = mass * acceleration

(assume the piano is moving left side )

←F = ma

F_(pull)+ F_(push)= M*a\\77.5 + 48.7 = 255 *a\\a = 0.495 ms^{-2}

7 0
2 years ago
A 12 kg box sliding on a horizontal floor has an initial speed of 4.0 m/s. The coefficient of friction bctwecn thc box and the f
Hitman42 [59]

Answer:

(D) 96 kg-m/s

Explanation:

Let's start off by first calculating the normal force between the box and the floor.

This will be:

Normal Force = 12 * 9.81 = 117.72 N

We can now use the friction equation to find the frictional force on the box when it is moving:

Frictional force = Coefficient of friction * Normal Force

Frictional force = 0.4 * 117.72 = 47.09 N

Finally, since we have the force on the box, we can find the acceleration:

F = Mass * Acceleration

47.09 = 12 * Acceleration

Acceleration = 3.92 m/s^2

Final speed after 2 seconds:

V=U+a*t

V = 4 +(-3.92)*(2)

V= -3.84 m/s

Since we know the initial and final speeds, we can calculate the change in momentum:

Change in momentum = Final Momentum - Initial Momentum

Change in momentum = 3.84*12-(-4)*12

Change in momentum = 94.08 kg*m/s

Thus we can see that option (D) is the closest answer.

6 0
2 years ago
The A-string (440 HzHz) on a piano is 38.9 cmcm long and is clamped tightly at both ends. If the string tension is 667N, what's
Mice21 [21]

Answer:

Mass, m = 2.2 kg                                

Explanation:

It is given that,

Frequency of the piano, f = 440 Hz

Length of the piano, L = 38.9 cm = 0.389 m

Tension in the spring, T = 667 N

The frequency in the spring is given by :

f=\dfrac{1}{2L}\sqrt{\dfrac{T}{\mu}}

\mu=\dfrac{m}{L} is the linear mass density

On rearranging, we get the value of m as follows :

m=\dfrac{T}{4Lf^2}

m=\dfrac{667}{4\times 0.389\times (440)^2}

m = 0.0022 kg

or

m = 2.2 grams

So, the mass of the object is 2.2 grams. Hence, this is the required solution.

3 0
2 years ago
Read 2 more answers
The U.S. Department of Energy had plans for a 1500-kg automobile to be powered completely by the rotational kinetic energy of a
navik [9.2K]

Answer:

230

Explanation:

\omega = Rotational speed = 3600 rad/s

I = Moment of inertia = 6 kgm²

m = Mass of flywheel = 1500 kg

v = Velocity = 15 m/s

The kinetic energy of flywheel is given by

K=\dfrac{1}{2}I\omega^2\\\Rightarrow K=\dfrac{1}{2}6\times 3600^2\\\Rightarrow K=38880000\ J

Energy used in one acceleration

K=\dfrac{1}{2}mv^2\\\Rightarrow K=\dfrac{1}{2}1500\times 15^2\\\Rightarrow K=168750\ J

Number of accelerations would be given by

n=\dfrac{38880000}{168750}\\\Rightarrow n=230.4

So the number of complete accelerations is 230

8 0
2 years ago
Other questions:
  • Anthony and Maelynn are watching a football game outside on a sunny day. Anthony is wearing a black shirt and Maelynn is wearing
    9·2 answers
  • A piano wire has a length of 81 cm and a mass of 2.0
    6·1 answer
  • A physics student stands on the rim of the canyon and drops a rock. The student measures the time for it to reach the bottom to
    6·1 answer
  • A 100 kg object hangs from two steel cables, both with radius 1.2 mm. The first cable is 2.5 m long and 2 mm shorter than the se
    7·1 answer
  • Suppose we replace the mass in the video with one that is four times heavier. How far from the free end must we place the pivot
    14·1 answer
  • A long thin uniform rod of length 1.50 m is to be suspended from a frictionless pivot located at some point along the rod so tha
    6·1 answer
  • A vertical wire carries current in the upward direction. An electron is traveling parallel to the wire. What is the angle ααalph
    13·1 answer
  • a spring gun initially compressed 2cm fires a 0.01kg dart straight up into the air. if the dart reaches a height it 5.5m determi
    14·1 answer
  • Imagine you derive the following expression by analyzing the physics of a particular system: M= (mv2r)(mGr2). Simplify the expre
    12·1 answer
  • A projectile was launched horizontally with a velocity of 468 m/s, 1.86 m above the ground. Calculate how long it would take for
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!