Answer:

Explanation:
Given that:
Absolute temperature of the body, 
- emissivity of the body,

<u>Using Stefan Boltzmann Law of thermal radiation:</u>

where:
(Stefan Boltzmann constant)
Now putting the respective values:


Answer:
Explanation:
Let L be the length of the wire.
velocity of pulse wave v = L / 24.7 x 10⁻³ = 40.48 L m /s
mass per unit length of the wire m = 14.5 x 10⁻⁶ x 10⁻³ / 2 x 10⁻² kg / m
m = 7.25 x 10⁻⁷ kg / m
Tension in the wire = Mg , M is mass hanged from lower end.
= .4 x 9.8
= 3.92 N
expression for velocity of wave in the wire
, T is tension in the wire , m is mass per unit length of wire .
40.48 L = 
1638.63 L² = 3.92 / (7.25 x 10⁻⁷)
L² = 3.92 x 10⁷ / (7.25 x 1638.63 )
L² = 3299.64
L = 57.44 m /s
5,10,15,20,25,30, that's how much it should have been
<span>Assuming pulley is frictionless. Let the tension be ‘T’. See equation below.</span>
<span> </span>
<h3><u>Answer;</u></h3>
= 1.256 m
<h3><u>Explanation;</u></h3>
We can start by finding the spring constant
F = k*y
Therefore; k = F/y = m*g/y
= 0.40kg*9.8m/s^2/(0.76 - 0.41)
= 11.2 N/m
Energy is conserved
Let A be the maximum displacement
Therefore; 1/2*k*A^2 = 1/2*k*(1.20 - 0.41)^2 + 1/2*m*v^2
Thus; A = sqrt((1.20 - 0.55)^2 + m/k*v^2)
= sqrt((1.20 -0.55)^2 + 0.40/9.8*1.6^2)
= 0.846 m
Thus; the length will be 0.41 + 0.846 = 1.256 m