Answer:
a = 4.72 m/s²
Explanation:
given,
mass of the box (m)= 6 Kg
angle of inclination (θ) = 39°
coefficient of kinetic friction (μ) = 0.19
magnitude of acceleration = ?
box is sliding downward so,
F - f = m a
f is the friction force
m g sinθ - μ N = ma
m g sinθ - μ m g cos θ = ma
a = g sinθ - μ g cos θ
a = 9.8 x sin 39° - 0.19 x 9.8 x cos 39°
a = 4.72 m/s²
the magnitude of acceleration of the box down the slope is a = 4.72 m/s²
Answer:
The maximum transverse speed of the bead is 0.4 m/s
Explanation:
As we know that the Amplitude of the travelling wave is
A = 3.65 mm
Now the speed of the travelling wave is

now we know that distance of first antinode from one end is 27.5 cm
so length of the loop of the standing wave is given as


now we have



now we have



now at x = 13.8 cm


now we have



now maximum speed is given as



Answer:
The amplitude of the eardrum's oscillation is 6.65×10^-13 m.
Explanation:
Given data:
The sound has a frequency of 262 Hz
The sound level is 84 dB
The air density is 1.21 kg/m^3
The speed of sound is 346 m/s
Solution:
As, Intensity of sound is given by,
I = Io×10^(s/10 db)
I = 2×π^2×ρ×v×f^2×Sm^2
Thus,
Sm = √(Io×10^(s/10 db)) / √( 2×π^2×ρ×v×f^2)
Now, put the values,
Sm = √( 10^-12 × 10^(84/10) ) / √( 2×(3.14)^2×1.21×346×(262)^2 )
Sm = √(2.51×10^-4 / 5.66×10^8)
Sm = √0.443×10^-12
Sm = 6.65×10^-13 m.
Answer:
86.4 N downward
Explanation:
Force: This can be defined as the product of mass and acceleration of a body.
The S.I unit of Force is Newton(N).
The Expression of force is given as,
F = ma ................ Equation 1
Where F = force of the parachute harness, m = mass of the skydiver, a = acceleration of the skydiver.
Given: m = 72 kg, a = 1.2 m/s²
Substitute into equation 1
F = 72(1.2)
F = 86.4 N down ward.
Hence the force on the parachute harness = 86.4 N downward