Answer:
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Explanation:
Total force required = Mass x Acceleration,
F = ma
Here we need to consider the system as combine, total mass need to be considered.
Total mass, a = m₁+m₂+m₃ = 584 + 838 + 322 = 1744 kg
We need to accelerate the group of rocks from the road at 0.250 m/s²
That is acceleration, a = 0.250 m/s²
Force required, F = ma = 1744 x 0.25 = 436 N
Force must be applied to m₁ to move the group of rocks from the road at 0.250 m/s² = 436 N
Answer:
The magnitude of the magnetic force exerted on the moving charge by the current in the wire is 2.18 x
N
The direction of the magnetic force exerted on the moving charge by the current in the wire is radially inward
Explanation:
given information:
current, I = 3 A
= +6.5 x
C
r = 0.05 m
v = 280 m/s
and direction of the magnetic force exerted on the moving charge by the current in the wire, we can use the following formula:
F = qvB sin θ
where
F = magnetic force (N)
q = electric charge (C)
v = velocity (m/s)
θ = the angle between the velocity and magnetic field
to find B we use
B = μ
I/2πr
μ
= 4π x
or 1.26 x
N/
, thus
B = 4π x
x 3 / 2π(0.05)
= 1.2 x
T
Now, we can calculate the magnitude force
F = qvB sin θ
θ = 90°, because the speed and magnetic are perpendicular
F = 6.5 x
x 280 x 1.2 x
sin 90°
= 2.18 x
N
Using the hand law, the magnetic direction is radially inward
<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>
QUESTION)</u></h3>
Assuming that the initial velocity of the jumper is zero, on Earth any freely falling object has an acceleration of 9.8 m/s².
<em>✔ We have : a = v/Δt = ⇔ Δt = v/a </em>
- Δt = (√2xgxh)/9,8
- Δt = (14√10)/9,8
- Δt ≈ 4,5 s
Answer:
3100 m/s
Explanation:
The relationship between frequency and wavelength of a wave is given by the wave equation:

where
v is the speed of the wave
f is its frequency
is the wavelength
For the wave in this problem,
f = 15,500 Hz

Therefore, the wave speed is

Explanation:
It is given that,
Diameter of the semicircle, d = 45 m
Radius of the semicircle, r = 22.5 m
Speed of greyhound, v = 15 m/s
The greyhound is moving under the action of centripetal acceleration. Its formula is given by :



We know that, 


Hence, this is the required solution.