Answer:
[1, 6, -2]
Explanation:
Given the following :
Initial Position of spaceship : [3 2 4] km
Velocity of spaceship : [-1 2 - 3] km/hr
Location of ship after two hours have passed :
Distance moved by spaceship :
Velocity × time
[-1 2 -3] × 2 = [-2 4 -6]
Location of ship after two hours :
Initial position + distance moved
[3 2 4] + [-2 4 -6] = [3 + (-2)], [2 + 4], [4 + (-6)]
= [3-2, 2+4, 4-6] = [1, 6, -2]
Answer:
the answer the correct is 3
Explanation:
Let's use the relationship between momentum and momentum
I = Δp
I = m
- m v₀
Let's calculate
I = 0.4 5.0 - 0
I = 2.0 N s
By Newton's law of action and reaction the force on the ball is equal to the force that the ball exerts on the foot, therefore the impulse on the foot of equal magnitude, but in the opposite direction
I = 2.0 Ns with 60°
When reviewing the answer the correct is 3
Rw^2 = GmM/r^2
<span> Leads to
</span><span> w^2 r^3 = GM
</span><span> (2pi /T) ^2 r^3 = GM
</span><span> 4pi^2 r^3 = GM T^2
</span><span> r^3 = GM T^2 / 4pi^2
</span><span> Work out r^3 then r.
</span> T = 125 min = 125(60) = 7500 s
<span> R = 6.38E6 m
</span><span> m = 5.97E24 kg
</span><span> G = 6.673E-11
</span> r=<span>
8279791.78</span><span> m
Since r = radius R of Earth + height above urface,h
</span><span> h = r - R = </span><span>
8279791.78 - </span>6.38E6 = <span>
<span>1899791.78 m
h=</span></span><span>
<span>1899.79178 Km</span></span>
Answer:
V
I and II
III and IV
Explanation:
The impulse is equal to the change in momentum of the object involved, so we can calculate the change in momentum in each situation and compare them all.
Taking always east as positive direction, and labelling
u the initial velocity
v the final velocity
m = 1000 kg the mass (which is always equal)
We find:
(i)
u = 25 m/s
v = 0

(II)
u = 25 m/s
v = 0

(III)
In this case,
F = 2000 N is the force
is the time
So the magnitude of the impulse is

(IV)
F = 2000 N is the force
is the time
So the magnitude of the impulse is

(V)
u = 25 m/s
v = -25 m/s

So the ranking from largest to smallest is:
V
I and II
III and IV