answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Strike441 [17]
2 years ago
10

To open a door, you apply a force of 10 N on the door knob, directed normal to the plane of the door. The door knob is 0.9 meter

s from the hinge axis, and the door swings open with an angular acceleration of 5 radians per second squared. What is the moment of inertia of the door
Physics
1 answer:
Zielflug [23.3K]2 years ago
6 0

Answer:

The moment of inertia is I  = 1.8 \ kg m^2

Explanation:

From the question we are told that

   The force applied is  F  =  10 \ N

    The distance of the knob to the hinge is  d =  0.9 \ m

     The angular acceleration is  a =  5 \ rad/s

The moment is mathematically represented as

        I   =  \frac{d Fsin(\theta)}{a}

Here \theta = 90^o This is because the force direction is perpendicular to the plane of the door

substituting values

          I  =  \frac{0.9 * 10 * sin (90)}{5}

          I  = 1.8 \ kg m^2

You might be interested in
The weight of Earth's atmosphere exerts an average pressure of 1.01 ✕ 105 Pa on the ground at sea level. Use the definition of p
zloy xaker [14]

Answer:

The weight of Earth's atmosphere exert is 516.6\times10^{17}\ N

Explanation:

Given that,

Average pressure P=1.01\times10^{5}\ Pa

Radius of earth R_{E}=6.38\times10^{6}\ m

Pressure :

Pressure is equal to the force upon area.

We need to calculate the weight of earth's atmosphere

Using formula of pressure

P=\dfrac{F}{A}  

F=PA

F=P\times 4\pi\times R_{E}^2

Where, P = pressure

A = area

Put the value into the formula

F=1.01\times10^{5}\times4\times\pi\times(6.38\times10^{6})^2

F=516.6\times10^{17}\ N

Hence, The weight of Earth's atmosphere exert is 516.6\times10^{17}\ N

8 0
2 years ago
Read 2 more answers
Two objects, each of weight W, hang vertically by spring scales as shown in the figure. The pulleys and the strings attached to
valentinak56 [21]

The reading on the scale is the tension on the string that connects the two objecst. In order to support the blocks it must pull the weights by a force magnitude of W. So, the tension of the rope is W. Therefore, the reading on the scale is W, D.


I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!

6 0
2 years ago
Read 2 more answers
A group of science and engineering students embarks on a quest to make an electrostatic projectile launcher. For their first tri
vekshin1

Electric charge on the plastic cube: 1.3\cdot 10^{-7}C

Explanation:

The electric potential around a charged sphere (such as the Van der Graaf) generator is given by

V(r)=\frac{kQ}{r}

where

k is the Coulomb's constant

Q is the charge on the sphere

r is the distance from the centre of the sphere

Here we have:

V = 200,000 V on the surface of the sphere, so at r = 12.0 cm

We need to find the voltage V' at 2.0 cm from the edge of the sphere, so at

r' = 12.0 + 2.0 = 14.0 cm

Since the voltage is inversely proportional to r, we can use:

Vr=V'r'\\V'=\frac{Vr}{r'}=\frac{(200,000)(12.0)}{14.0}=171,429 V

This is the potential at the location of the plastic cube.

Now we can use the law of conservation of energy, which states that the initial electric potential energy of the cube is totally converted into kinetic energy when the plastic cube is at infinite distance from the generator. So we can write:

qV' = \frac{1}{2}mv^2

where:

q is the charge on the plastic cube

V' is the potential at the location of the cube

m = 5.0 g = 0.005 kg is the mass of the cube

v = 3.0 m/s is the final speed of the cube

Solving for q, we find the charge on the cube:

q=\frac{mv^2}{2V'}=\frac{(0.005)(3.0)^2}{2(171,429)}=1.3\cdot 10^{-7}C

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

7 0
2 years ago
A 35 g steel ball is held by a ceiling-mounted electromagnet 4.0 m above the floor. A compressed-air cannon sits on the floor, 4
HACTEHA [7]

Answer:

7.9 m/s

Explanation:

When both balls collide, they have spent the same time for their motions.

Motion of steel ball

This is purely under gravity. It is vertical.

Initial velocity, <em>u </em>= 0 m/s

Distance, <em>s</em> = 4.0 m - 1.2 m = 2.8 m

Acceleration, <em>a</em> = g

Using the equation of motion

s = ut+\frac{1}{2}at^2

2.8 \text{ m} = 0+\dfrac{gt^2}{2}

t = \sqrt{\dfrac{5.6}{g}}

Motion of plastic ball

This has two components: a vertical and a horizontal.

The vertical motion is under gravity.

Considering the vertical motion,

Initial velocity, <em>u </em>= ?

Distance, <em>s</em> = 1.2 m

Acceleration, <em>a</em> = -<em>g                   </em> (It is going up)

Using the equation of motion

s = ut+\frac{1}{2}at^2

1.2\text{ m} = ut-\frac{1}{2}gt^2

Substituting the value of <em>t</em> from the previous equation,

1.2\text{ m} = u\sqrt{\dfrac{5.6}{g}}-\dfrac{1}{2}\times g\times\dfrac{5.6}{g}

u\sqrt{\dfrac{5.6}{g}} = 4.0

Taking <em>g</em> = 9.8 m/s²,

u = \dfrac{4.0}{0.756} = 5.29 \text{ m/s}

This is the vertical component of the initial velocity

Considering the horizontal motion which is not accelerated,

horizontal component of the initial velocity is horizontal distance ÷ time.

u_h = \dfrac{4.4\text{ m}}{0.756\text{ s}} = 5.82\text{ m/s}

The initial velocity is

v_i = \sqrt{u^2+u_h^2} = \sqrt{(5.29\text{ m/s})^2+(5.82\text{ m/s})^2} = 7.9 \text{ m/s}

4 0
2 years ago
Explain why it takes more energy to remove the second electron from a lithium atom than it does to remove the fourth electron fr
slava [35]
It takes more energy to remove the second electron from a lithium atom than it does to remove the fourth electron from a carbon atom because its inner core e, not valence e. C's 4th removed e is still a valence e. And also <span>because more nuclear charge acting on the second electron, it is more close to the nucleus, thus the the protons attract it more than the 4th electron.</span>
8 0
2 years ago
Read 2 more answers
Other questions:
  • The suspension cable of a 1,000 kg elevator snaps, sending the elevator moving downward through its shaft. The emergency brakes
    14·1 answer
  • A girl is sledding down a slope that is inclined at 30º with respect to the horizontal. The wind is aiding the motion by providi
    8·1 answer
  • A ball collides elastically with an immovable wall fixed to the earth’s surface. Which statement is false? 1. The ball's speed i
    5·1 answer
  • The dielectric strength of rutile is 6.0 × 106 V/m, which corresponds to the maximum electric field that the dielectric can sust
    13·2 answers
  • A heavy turntable, used for rotating large objects, is a solid cylindrical wheel that can rotate about its central axle with neg
    10·1 answer
  • If there is a negative sign in front of the Hooke's Law equation, what does the force, F, represent?
    6·1 answer
  • A high-jumper, having just cleared the bar, lands on an air mattress and comes to rest. Had she landed directly on the hard grou
    14·1 answer
  • A carousel - a horizontal rotating platform - of radius r is initially at rest, and then begins to accelerate constantly until i
    5·1 answer
  • If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
    14·1 answer
  • What is the magnitude of the momentum of a 11kg object moving at 2.2 m/s?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!