Answer:
h = v₀² / 2g
, h = k/4g x²
Explanation:
In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches
Starting point. Lower compressed spring
Em₀ = K = ½ m v²
Final point. Highest on the path
= U = mg h
As or no friction the energy is conserved
Em₀ = Em_{f}
½ m v₀²² = m g h
h = v₀² / 2g
We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse
½ k x² = 2 g h
h = k/4g x²
Answer:
Decreasing the distance between Hox and Blox, increasing the mass of Hox, or increasing the mass of Hox and Blox.
Explanation:
The gravity force is directly proportional to the mass of the bodies and inversely proportional to the square of the distance that separates them.
Or
If we decrease the distance between both planets (Hox and Blox), the gravitational pull between them will increase.
On the other hand, if we keep the distance between Hox and Blox, but we increase the mass of one of them, or increase the mass of both, the gravitational pull between them will also increase.
Answer: The final volume V₂ of the container is 0.039 m³.
Explanation:
Since the temperature is constant, the gas would expand isothermally.
For isothermal expansion,
P₁V₁=P₂V₂
Where, P₁ and P₂ are the initial and final pressure and V₁ and V₂ are initial and final volume.
It is given that:
V₁ = 0.0250 m³
P₁ = 1.5 × 10⁶ Pa
P₂ = 0.950 × 10⁶ Pa
V₂ = ?
⇒ 1.5 × 10⁶ Pa × 0.0250 m³ = 0.950 × 10⁶ Pa × V₂
⇒V₂ = 0.039 m³
Hence, the final volume V₂ of the container is 0.039 m³.
Answer:
A: 4 times as much
B: 200 N/m
C: 5000 N
D: 84,8 J
Explanation:
A.
In the first question, we have to caculate the constant of the spring with this equation:

Getting the k:
![k=\frac{m*g}{x} =\frac{0,2[kg]*9,81[\frac{m}{s^{2} } ]}{0,05[m]} =39,24[\frac{N}{m}]](https://tex.z-dn.net/?f=k%3D%5Cfrac%7Bm%2Ag%7D%7Bx%7D%20%3D%5Cfrac%7B0%2C2%5Bkg%5D%2A9%2C81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D%7D%7B0%2C05%5Bm%5D%7D%20%3D39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D)
Then we can calculate how much the spring stretch whith the another mass of 0,2kg:
![x=\frac{m*g}{k} =\frac{0,4[kg]*9,81[\frac{m}{s^{2} } ]}{39,24[\frac{N}{m}]} =0,1[m]\\](https://tex.z-dn.net/?f=x%3D%5Cfrac%7Bm%2Ag%7D%7Bk%7D%20%3D%5Cfrac%7B0%2C4%5Bkg%5D%2A9%2C81%5B%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D%20%5D%7D%7B39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%7D%20%3D0%2C1%5Bm%5D%5C%5C)
The energy of a spring:

For the first case:
![E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,05[m])^{2} =0,049 [J]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B2%7D%20%2A39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%2A%280%2C05%5Bm%5D%29%5E%7B2%7D%20%3D0%2C049%20%5BJ%5D)
For the second case:
![E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,1[m])^{2} =0,0196 [J]](https://tex.z-dn.net/?f=E%3D%5Cfrac%7B1%7D%7B2%7D%20%2A39%2C24%5B%5Cfrac%7BN%7D%7Bm%7D%5D%2A%280%2C1%5Bm%5D%29%5E%7B2%7D%20%3D0%2C0196%20%5BJ%5D)
If you take the relation E2/E1 = 4.
B.
We have the next facts:
x=0,005 m
E = 0,0025 J
Using the energy equation for a spring:
⇒![k=\frac{E*2}{x^{2} } =\frac{0,0025[J]*2}{(0,005[m])^{2} } =200[\frac{N}{m} ]](https://tex.z-dn.net/?f=k%3D%5Cfrac%7BE%2A2%7D%7Bx%5E%7B2%7D%20%7D%20%3D%5Cfrac%7B0%2C0025%5BJ%5D%2A2%7D%7B%280%2C005%5Bm%5D%29%5E%7B2%7D%20%7D%20%3D200%5B%5Cfrac%7BN%7D%7Bm%7D%20%5D)
C.
The potential energy of the diver will be equal to the kinetic energy in the moment befover hitting the watter.
![E=W*h=500[N]*10[m]=5000[J]](https://tex.z-dn.net/?f=E%3DW%2Ah%3D500%5BN%5D%2A10%5Bm%5D%3D5000%5BJ%5D)
Watch out the units in this case, the 500 N reffer to the weighs of the diver almost relative to the earth, thats equal to m*g.
D.
The work is equal to the force acting in the direction of the motion. so we have to do the diference beetwen angles to obtain the effective angle where the force is acting: 47-15=32 degree.
The force acting in the direction of the ramp will be the projection of the force in the ramp, equal to F*cos(32). The work will be:
W=F*d=F*cos(32)*d=10N*cos(32)*10m=84,8J
The climber move 0.19 m/s faster than surfer on the nearby beach.
Since both the person are on the earth, and moves with the constant angular velocity of earth, however there linear velocity is different.
Number of seconds in a day, t=24*60*60=86400 sec
The linear speed on the beach is calculated as
V1=
Here, t is the time
Plugging the values in the above equation
V1=
=465.421 m/s
Velocity on the mountain is calculated as
V2=
Plugging the values in the above equation
V2=
=465.61 m/s
Therefore person on the mountain moves faster than the person on the beach by 465.61-465.421=0.19 m/s