answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexgriva [62]
2 years ago
12

A two-resistor voltage divider employing a 2-k? and a 3-k? resistor is connected to a 5-V ground-referenced power supply to prov

ide a 2-V voltage. Sketch the circuit. Assuming exact-valued resistors, what output voltage (measured to ground) and equivalent output resistance result? If the resistors used are not ideal but have a ±5% manufacturing tolerance, what are the extreme output voltages and resistances that can result?

Physics
1 answer:
vesna_86 [32]2 years ago
4 0

Answer:

circuit sketched in first attached image.

Second attached image is for calculating the equivalent output resistance

Explanation:

For calculating the output voltage with regarding the first image.

Vout = Vin \frac{R_{2}}{R_{2}+R_{1}}

Vout = 5 \frac{2000}{5000}[/[tex][tex]Vout = 5 \frac{2000}{5000}\\Vout = 5 \frac{2}{5} = 2 V

For the calculus of the equivalent output resistance we apply thevenin, the voltage source is short and current sources are open circuit, resulting in the second image.

so.

R_{out} = R_{2} || R_{1}\\R_{out} = 2000||3000 = \frac{2000*3000}{2000+3000} = 1200

Taking into account the %5 tolerance, with the minimal bound for Voltage and resistance.  

if the -5% is applied to both resistors the Voltage is still 5V because the quotient  has 5% / 5% so it cancels. to be more logic it applies the 5% just to one resistor, the resistor in this case we choose 2k but the essential is to show that the resistors usually don't have the same value. applying to the 2k resistor we have:

Vout = 5 \frac{1900}{4900}\\Vout = 5 \frac{19}{49} = 1.93 V

Vout = 5 \frac{2100}{5100}\\Vout = 5 \frac{21}{51} = 2.05 V

R_{out} = R_{2} || R_{1}\\R_{out} = 1900||2850= \frac{1900*2850}{1900+2850} = 1140

R_{out} = R_{2} || R_{1}\\R_{out} = 2100||3150 = \frac{2100*3150 }{2100+3150 } = 1260

so.

V_{out} = {1.93,2.05}V\\R_{1} = {1900,2100}\\R_{2} = {2850,3150}\\R_{out} = {1140,1260}

You might be interested in
The gas tank of Dave’s car has a capacity of 12 gallons. The tank was 38 full before Dave filled it to capacity. It cost him $2.
m_a_m_a [10]

Answer:

$ 18.75            

Explanation:

given,                                              

capacity of the Dave’s car = 12 gallons

Assuming that the tank is 3/8 full before

Cost of gas per gallon =  $2.50 per gallon of gas

Volume Dave have to fill                      

       =1 - \dfrac{3}{8}                          

       =\dfrac{5}{8} of full tank              

       =\dfrac{5}{8}\times 12              

volume Dave have to fill = 7.5 gallons          

total money Dave spent                  

     = 7.5 gallons x $2.50                

     = $ 18.75                                            

Dave have to spend $ 18.75 to fill tank to it capacity.

5 0
2 years ago
Read 2 more answers
A 6.0-cm-diameter, 11-cm-long cylinder contains 100 mg of oxygen (O2) at a pressure less than 1 atm. The cap on one end of the c
butalik [34]

Answer:

The temperature of the gas is 1197.02 K

Explanation:

From ideal gas law;

PV = nRT

Where;

P is the pressure of the gas

V is the volume of the gas

R is ideal gas constant = 8.314 L.kPa/mol.K

T is the temperature of the gas

n is the number of moles of gas

Volume of the gas in the cylindrical container = πr²h

Given;

r = 6/2 = 3 cm = 0.03 m

h = 11 cm = 0.11 m

V = π × (0.03)² × 0.11 = 3.11 × 10⁻⁴ m³ = 0.311 L

number of moles of oxygen gas = Reacting mass / molar mass

=\frac{0.1}{32} = 0.003125, moles

T = \frac{PV}{nR} = \frac{100X0.311}{0.003125X8.314} =1197.02K

Therefore, the temperature of the gas is 1197.02 K

6 0
2 years ago
Does a fish appear closer or farther from a person wearing swim goggles with an air pocket in front of their eyes than the fish
Sunny_sXe [5.5K]

Answer:

In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer

In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away

Explanation:

This exercise can be analyzed with the law of refraction that establishes that a ray of light when passing from one medium to another with a different index makes it deviate from its path,

      n₁ sin θ₁ = n₂ sin θ₂

where n₁ and n₂ are the refractive indices of the incident and refracted means and the angles are also for these two means.

In this case, the index of seawater replacement is 1.33, the index of refraction of air is 1, which is why the angle of replacement is less than the incident angle, so the fish seems to be closer

1 sin θ₁ = 1.33 sin θ₂

        θ₂ = sin⁻¹ ( 1/1.33 sin θ₁)

In the opposite case, when the fish looked at the face of the man, the angle of greater reason why it seems to be further away

4 0
2 years ago
If a 110 kg go-cart traveling at a velocity of 13.41 m/s has a collision with an impulse of 615 Nxs, what is the
mafiozo [28]

Answer:

5.59 m/s

Explanation:

We are given;

Mass = 110 kg

Initial velocity: u = 13.41 m/s

Force = 615 N

Time(t) = 1 s

Now, the formula for force is;

Force = mass x acceleration

Thus;

615 = 110 × acceleration

\Acceleration(a) = 615/110 = 5.591 m/s²

Now, using Newton's first law of motion, we can find acceleration (a). Thus;

v = u + at

v = 13.41 + (5.591 × 1)

v ≈ 19 m/s

So,the change in velocity is;

Final velocity(v) - Initial velocity(u) = 19 - 13.41 = 5.59 m/s

6 0
2 years ago
A rock of mass m is thrown horizontally off a building from a height h. the speed of the rock as it leaves the thrower's hand at
Stells [14]
The correct answer is <span>3) K_f =  \frac{1}{2}mv_0^2 + mgh.
</span>
In fact, the total energy of the rock when it <span>leaves the thrower's hand is the sum of the gravitational potential energy U and of the initial kinetic energy K:
</span>E=U_i+K_i=mgh +  \frac{1}{2}mv_0^2
<span>As the rock falls down, its height h from the ground decreases, eventually reaching zero just before hitting the ground. This means that U, the potential energy just before hitting the ground, is zero, and the total final energy is just kinetic energy: 
</span>E=K_f<span>
But for the law of conservation of energy, the total final energy must be equal to the tinitial energy, so E is always the same. Therefore, the final kinetic energy must be
</span>K_f = mgh +  \frac{1}{2}mv_0^2<span>
</span>

7 0
2 years ago
Other questions:
  • You and your dog are walking along a pond. Your dog looks into the still water and is startled to see its reflection. Which phen
    7·2 answers
  • A compact car has a maximum acceleration of 4.0 m/s2 when it carries only the driver and has a total mass of 1200 kg . you may w
    7·2 answers
  • An electron starts from rest 3.00 cm from the center of a uniformly charged sphere of radius 2.00 cm. if the sphere carries a to
    11·1 answer
  • A person walks 5.0kilometers north, then 5.0 kilometers east. His displacement is closest to ? A. 10 kilometers northwest B. 7.1
    7·1 answer
  • 0.5000 kg of water at 35.00 degrees Celsius is cooled, with the removal of 6.300 E4 J of heat. What is the final temperature of
    8·2 answers
  • Which description best explains a molecular bonding?
    5·1 answer
  • A sample of a gas occupies a volume of 90 mL at 298 K and a pressure of 702 mm Hg. What is the correct expression for calculatin
    9·1 answer
  • If the charge that enters each meter of the axon gets distributed uniformly along it, how many coulombs of charge enter a 0.100
    11·1 answer
  • A 0.20 kg mass on a horizontal spring is pulled back 2.0 cm and released. If, instead, a 0.40 kg mass were used in this same exp
    12·1 answer
  • An iguana runs back and forth along the ground. The horizontal position of the iguana in meters over time is shown
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!