Explanation:
Below is an attachment containing the solution.
Answer:
P = ρRT/M
Explanation:
Ideal gas equation is given as follows generally:
PV = nRT (1)
P = pressure in the containing vessel
V = volume of the containing vessel
n = number of moles
R = gas constant
T = temperature in K
n = m/M
m = mass of the gas contained in the vessel in g
M = molar mass in g/mol
ρ = m/V
Density of the gas = ρ
Substituting for n in (1)
PV = mRT/M. (2)
Dividing equation (2) through by V
P = m/V ×RT/M
P = ρRT/M
Answer
The answer and procedures of the exercise are attached in the following archives.
Step-by-step explanation:
You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.
Answer:
Rod 1 has greater initial angular acceleration; The initial angular acceleration for rod 1 is greater than for rod 2.
Explanation:
For the rod 1 the angular acceleration is
Similarly, for rod 2

Now, the moment of inertia for rod 1 is
,
and the torque acting on it is (about the center of mass)

therefore, the angular acceleration of rod 1 is


Now, for rod 2 the moment of inertia is


and the torque acting is (about the center of mass)


therefore, the angular acceleration
is


We see here that

therefore

In other words , the initial angular acceleration for rod 1 is greater than for rod 2.
Answer:
16,18,22
Or
1,3,7
Explanation:
The detailed explanation is contained in the image attached. The lengths are found using Pythagoras theorem and the two lengths reflects the two values of x yielded by the quadratic equation