answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
evablogger [386]
1 year ago
13

A wrench is placed at 30 cm in front of a diverging lens with a focal length of magnitude 10 cm. What is the magnification of th

e wrench?
Physics
1 answer:
WARRIOR [948]1 year ago
4 0

Answer:

0.25

Explanation:

Magnification = image distance/object distance

mag = v/u.................. Equation 1

Given: f = -10 cm ( diverging lens) u = 30 cm.

Where can calculate for the value of v using

1/f = 1/u+1/v

make v the subject of the equation

v = fv/(u-f)..................... Equation 2

Substitute into equation 2

v = -30(10)/(30+10)

v = -300/40

v = -7.5 cm.

substituting into equation 1,

mag = 7.5/30

mag = 0.25

hence the magnification of the wretch = 0.25

You might be interested in
Table 2.4 shows how the dispacement of a runner changed during a sprint race. Draw a dispacement-time graph to show this data, a
GalinKa [24]
4. Table 2.4 shows how the displacement of a runner changed
during a sprint race. Draw a displacement–time graph to show
this data, and use it to deduce the runner’s speed in the middle
of the race.
Table 2.4 Data for a sprinter during a race
Displacement
(m)
0 4 10 20 50 80 105
Time (s) 1 2 3 6 9 12
8 0
1 year ago
A nonuniform, 80.0-g, meterstick balances when the support is placed at the 51.0-cm mark. At what location on the meterstick sho
Gnoma [55]

Answer:34 cm

Explanation:

Given

mass of meter stick m=80 gm

stick is balanced when support is placed at 51 cm mark

Let us take 5 gm tack is placed at x cm on meter stick so that balancing occurs at x=50 cm mark

balancing torque

80\times 10^{-3}(51-50)=5\times 10^{-3}(50-x)

80=5(50-x)

80=250-5x

5x=170

x=\frac{170}{5}

x=34 cm

4 0
1 year ago
Suppose that the current in the solenoid is i(t. within the solenoid, but far from its ends, what is the magnetic field b(t due
Mkey [24]
The answer is B(t) = constants x I(t)

Please take precaution on the point that it is an independent field of its radial position, if the point is measured well in the solenoid. (also the radial position is the axis of its symmetry)
7 0
1 year ago
Read 2 more answers
Jake uses a fire extinguisher to put out a small fire. When he squeezes the handle, the flame rettardant is released from the ex
Tpy6a [65]
Can you attach a picture of the actual problem?
7 0
2 years ago
Read 2 more answers
A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion
suter [353]

A) The mass of the continent is 2.5\cdot 10^{21} kg

B) The kinetic energy is 2016 J

C) The speed of the jogger should be 7.1 m/s

Explanation:

A)

The mass of the continent can be calculated as

m = \rho V

where

\rho = 2800 kg/m^3 is its density

V is its volume

We have to calculate its volume. We know that the continent is represented as a slab of side 5900 km (so its surface is 5900 x 5900, assuming it is a square) and depth of 26 km, so its volume is:

V=(5900 km)^2 (26 km)=9.05\cdot 10^8 km^3 =9.05 \cdot 10^8 \cdot (10^9 m^3/k^3)=9.05\cdot 10^7 m^3

So, the mass of the continent is

m=\rho V = (2800)(9.05\cdot 10^{17})=2.5\cdot 10^{21} kg

B)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the continent, we have:

m=2.5\cdot 10^{21} kg is the mass

v=4 cm/year is the speed

We have to convert the speed into SI units. we have:

1 cm = 0.01 m

1 year = (365)(24)(60)(60) s = 3.15\cdot 10^7 s

So, the speed is

v=4 cm/year = 0.04 m/year \cdot \frac{1}{3.15\cdot 10^7}=1.27\cdot 10^{-9} m/s

Therefore, the kinetic energy is

K=\frac{1}{2}(2.5\cdot 10^{21} kg)(1.27\cdot 10^{-9} m/s)^2=2016 J

C)

Again, the kinetic energy of an object is

K=\frac{1}{2}mv^2

For the jogger in this problem, his mass is

m = 80 kg

And we want its kinetic energy to be equal to that of the continent, so

K = 2016 J

Re-arranging the equation for v, we find what speed the jogger needs to have this kinetic energy:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(2016)}{80}}=7.1 m/s

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

8 0
1 year ago
Other questions:
  • Buffalo, New York, experienced a snowstorm November 13–21, 2014. Residents refer to the event as “Snowvember.” What was the like
    10·2 answers
  • Ryan and Becca are moving a folding table out of the sunlight. A cup of lemonade, with the message 0.44 kg is on the table. Becc
    6·1 answer
  • The upper end of a 3.80-m-long steel wire is fastened to the ceiling, and a 54.0-kg object is suspended from the lower end of th
    14·1 answer
  • While it’s impossible to design a perpetual motion machine, that is, a machine that keeps moving forever, come up with ways to k
    12·2 answers
  • A displacement vector is 34.0 m in length and is directed 60.0° east of north. What are the components of this vector? Northward
    15·1 answer
  • A toy car has a battery-powered fan attached to it such that the fan creates a constant force that is exerted on the car so that
    11·2 answers
  • A helicopter, starting from rest, accelerates straight up from the roof of a hospital. The lifting force does work in raising th
    11·1 answer
  • Mt. Asama, Japan, is an active volcano complex. In 2009, an eruption threw solid volcanic rocks that landed far from the crater.
    10·1 answer
  • A brass lid screws tightly onto a glass jar at 20 degrees C. To help open the jar, it can be placed into a bath of hot water. Af
    9·1 answer
  • Packages having a mass of 6 kgkg slide down a smooth chute and land horizontally with a speed of 3 m/sm/s on the surface of a co
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!