<span>First, we use the kinetic energy equation to create a formula:
Ka = 2Kb
1/2(ma*Va^2) = 2(1/2(mb*Vb^2))
The 1/2 of the right gets cancelled by the 2 left of the bracket so:
1/2(ma*Va^2) = mb*Vb^2 (1)
By the definiton of momentum we can say:
ma*Va = mb*Vb
And with some algebra:
Vb = (ma*Va)/mb (2)
Substituting (2) into (1), we have:
1/2(ma*Va^2) = mb*((ma*Va)/mb)^2
Then:
1/2(ma*Va^2) = mb*(ma^2*Va^2)/mb^2
We cancel the Va^2 in both sides and cancel the mb at the numerator, leving the denominator of the right side with exponent 1:
1/2(ma) = (ma^2)/mb
Cancel the ma of the left, leaving the right one with exponent 1:
1/2 = ma/mb
And finally we have that:
mb/2 = ma
mb = 2ma</span>
Answer: The property that will best provide evidence that the samples are solid includes:
--> if the substance has a definite shape,
-->if the substance has a definite volume
--> if it's tightly packed.
Explanation:
According to the kinetic theory of matter, every substance consist of very large number of very small particles called molecules. These molecules, which are made up of atoms that are the smallest particles of a substance that can exist in a free state.
Matter can exist in the following states:
--> Solid state
--> liquid state or
--> Gaseous state.
The general property of a substance that is in gaseous state includes:
--> Definite shape: A substance can be grouped as a solid if it's shape is fixed that is, it doesn't depend on the shape of other materials.
--> Definite volume: A substance can be grouped as a solid if it occupies its own shape. This is due to the force of cohesion among its molecules.
--> Tightly packed: A substance can be grouped as solid if the molecular movements of the particles are negligible.
From the samples under observation by Juan and kym, if the sample that possesses the above described qualities, it is a solid rather than liquid or gas.
A challenge scientists face with this process is the use of ultrathin iron oxide, to pull protons off water and produce hydrogen gas, which itself is a poor electrical conductor.
Answer:
13.9
Explanation:
Apparent weight is the normal force. Sum of the forces on the alloy when it is submerged:
∑F = ma
N + B − W = 0
N + ρVg − mg = 0
6.6 + (0.78 × 1000) V (9.8) − (0.750) (9.8) = 0
V = 9.81×10⁻⁵
If x is the volume of the first material, and y is the volume of the second material, then:
x + y = 9.81×10⁻⁵
(7.87×1000) x + (4.50×1000) y = 0.750
Two equations, two variables. Solve with substitution:
7870 (9.81×10⁻⁵ − y) + 4500 y = 0.750
0.772 − 7870 y + 4500 y = 0.750
0.0222 = 3370 y
y = 6.58×10⁻⁶
x = 9.15×10⁻⁵
The ratio of the volumes is:
x/y = 13.9
First make sure you draw a force diagram. You should have Fn going up, Fg going down, Ff going left and another Fn going diagonally down to the right. The angle of the diagonal Fn (we'll call it Fn2) is 35° and Fn2 itself is 80N. Fn2 can be divided into two forces: Fn2x which is horizontal, and Fn2y which is vertical. Right now we only care about Fn2y.
To solve for Fn2y we use what we're given and some trig. Drawing out the actual force of Fn2 along with Fn2x and Fn2y we can see it makes a right triangle, with 80 as the hypotenuse. We want to solve for Fn2y which is the opposite side, so Sin(35)=y/80. Fn2y= 80sin35 = 45.89N
Next we solve for Fg. To do this we use Fg= 9.8 * m. Mass = 30kg, so Fg = 9.8 * 30 = 294N.
Since the chair isn't moving up or down, we can set our equation equal to zero. The net force equation in the vertical direction will be Fn + Fn2y -Fg = 0. If we plug in what we know, we get Fn + 45.89 -294 = 0. Then solve this algebraically.
Fn +45.89 -294 = 0
Fn +45.89 = 294
Fn = 248.11 N
You'll get a more accurate answer if you don't round Fn2y when solving for it, it would be something along the lines of 45.88611 etc