answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nonamiya [84]
2 years ago
14

What is the wavelength of a 100-mhz ("fm 100") radio signal?

Physics
2 answers:
vagabundo [1.1K]2 years ago
7 0
Radio wave is about 3.10^8m/s divided by 10^8 hz is 3 nesters sound wave is 343m/s so thus Equal to approximately 0.78
luda_lava [24]2 years ago
3 0

Answer: 0.78

Explanation:

You might be interested in
_____ has a longer wavelength than _____. _____ has a longer wavelength than _____. Blue ... green Green ... yellow Red ... gree
nadya68 [22]

Answer:

red has a longer wavelength than yellow. Yellow has a longer wavelength than green.

Explanation

in the visible spectrum a color with high frequency  contains shorter wavelength.In this case red color has high wavelength followed by yellow followed by green,blue and violet.

3 0
2 years ago
Read 2 more answers
A box sliding on a horizontal frictionless surface runs into a fixed spring, compressing it a distance x1 from its relaxed posit
inn [45]

Answer:twice of initial value

Explanation:

Given

spring compresses x_1 distance for some initial speed

Suppose v is the initial speed and k be the spring constant

Applying conservation of energy

kinetic energy converted into spring Elastic potential energy

\dfrac{1}{2}mv^2=\dfrac{1}{2}kx_1^2----1

When speed doubles

\dfrac{1}{2}m(2v)^2=\dfrac{1}{2}kx_2^2----2

divide 1 and 2

\dfrac{1}{4}=\dfrac{x_1^2}{x_2^2}

x_2=2x_1

Therefore spring compresses twice the initial value

   

7 0
1 year ago
What is the work done by the 200.-N tension shown if it is used to drag the 150-N crate 25 m across the floor at a constant spee
WINSTONCH [101]

Answer:

0 J

Explanation:

Work equals force times distance, but the force is zero because the crate being dragged will have zero acceleration. Force equals mass times acceleration and since acceleration is zero, force has to equal zero as well. Since the force is zero, the work required also has to be zero.

8 0
1 year ago
Q6. The 600 N force applied to the bracket at As to be replaced by the two forces, Fa in the a-a direction and Fo in the b-b dir
jeka94

answer:

The horizontal component of the 600 N force is,

Fx = 600 cos(30) 519.61 N

The vertical component of the 600 N force is,

Fy = 600 sin(30) = 300 N

hope it's help!

6 0
1 year ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
2 years ago
Other questions:
  • a light bulb is 4.1 m from a surface. how much luminous flux must the bulb produce if the illuminance required is 22 lx?
    12·1 answer
  • Workers do 8000 J of work on a 2000-N crate to push it up a ramp. If the ramp is 2 m high, what is the efficiency of the ramp?
    9·2 answers
  • The seismic activity density of a region is the ratio of the number of earthquakes during a given time span to the land area aff
    11·2 answers
  • Geological evidence based on several radiometric techniques has provided a scientifically well-accepted age for the Earth. Repre
    11·1 answer
  • Lucille is finding it difficult to play soccer after school. Her doctor thinks that her cells might not be getting enough oxygen
    7·1 answer
  • Points A, B, and C are at the corners of an equilateral triangle of side 8 m. Equal positive charges of 4 mu or micro CC are at
    11·1 answer
  • Calculate the true mass (in vacuum) of a piece of aluminum whose apparent mass is 4.5000 kgkg when weighed in air. The density o
    5·1 answer
  • Derive an algebraic equation for the vertical force that the bench exerts on the book at the lowest point of the circular path i
    10·1 answer
  • A physician orders Humulin R 44 units and Humulin N 40 units qam and Humulin R 35 units ac evening meal subcutaneously. How many
    15·1 answer
  • A 15.0 g bullet traveling horizontally at 865 m>s passes through a tank containing 13.5 kg of water and emerges with a speed
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!