answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Juliette [100K]
1 year ago
9

A farmer wants to determine which of two brands of cow feed is best for the cows on a farm. Before using one of the feeds on all

the cows, the farmer decides to conduct an experiment using 36 individual cows. Which of the two plans for randomly assigning the treatments should the farmer use? Explain. (4 points) Plan A: Choose the 18 cows that are lowest in weight. Feed Brand K to all 18 of those cows. Feed Brand L to the remaining 18 cows. Plan B: Choose 18 of the 36 cows at random. Feed Brand K to those 18 cows and Brand L to the remaining 18 cows. Plan B, because the sample of cows is randomly chosen Plan A, because the cows that are lowest in weight need the feed the most and should be treated first Plans A and B are equivalent because they both follow experimental design. Plans A and B are both poorly designed because there are not enough cows to test. The plans cannot be evaluated from the information given.
Physics
2 answers:
Effectus [21]1 year ago
6 0

Answer:

the answer is A

Explanation:

Feliz [49]1 year ago
6 0

Answer:

Plan B, because the sample of cows is randomly chosen

You might be interested in
Calculate the number of moles in each of the following masses: 0.039 g of palladium 0.0073 kg of tantalum
marysya [2.9K]

Answer:

<em>The number of moles of palladium and tantalum are 0.00037 mole and 0.0000404 mole respectively</em>

Explanation:

Number of mole = reacting mass/molar mass

n = R.m/m.m......................... Equation 1

Where n = number of moles, R.m = reacting mass, m.m = molar mass.

For palladium,

R.m = 0.039 g and m.m = 106.42 g/mol

Substituting theses values into equation 1

n = 0.039/106.42

n = 0.00037 mole

For tantalum,

R.m = 0.0073 and m.m = 180.9 g/mol

Substituting these values into equation 1

n = 0.0073/180.9

n = 0.0000404 mole

<em>Therefore the number of moles of palladium and tantalum are 0.00037 mole and 0.0000404 mole respectively</em>

3 0
2 years ago
How much gravitational potential energy does a 45.2 kg object have when it is 21.9m above the ground?
Blizzard [7]

Answer:

Explanation:

The formula for gravitational potential energy is

Ep = m · g · h   Assuming that the acceleration is g = 10m/s²

Ep = 45.4 · 10 · 21.9 = 9,942.6 J

God is with you!!!

6 0
2 years ago
Each metal is illuminated with 400 nm (3.10 eV) light. Rank the metals on the basis of the maximum kinetic energy of the emitted
34kurt

Answer:

K.E(K) > K.E(Cs) > 0 (others)

Explanation:

Given the Work functions of the metal as

Aluminium (Wo)=4eV

Platinum(Wo) =6.4eV

Cesium (Wo) =2.1eV

Beryllium (Wo) = 5.0eV

Magnesium (Wo) = 3.7eV

Potassium (Wo) = 2.3eV

Using the formula:

K.E = hf - Wo........(1)

Wo = hfo..............(2)

From these the fo can be calculated for all the metals

Where K.E =Kinetic Energy

hf = energy of illumination = 3.10eV

h is Planck constant and has the value 6.6 × 10^-34JS^-1

The frequency f of the illumination is given by

f = 3.10 × 1.6 × 10^-19/6.6 × 10^-34

f = 7.51 × 10¹⁴ Hz..........(*)

Now an electron is only ejected if the threshold frequency of the metal is reached.

The work function has a threshold frequency (fo) for all the metals and this minimum frequency required to required to remove an electron from the surface of a metal.

We need to compare f with fo

If fo >= f there is emission, otherwise there is no emission

So using (2) we calculate for all fo and compare with f

K.E(Al) = 3.10 - 4.0 - 3.10 = -0.9eV, fo = 9.70 × 10¹⁴ Hz (no emission)

K.E(Pt) = 3.10 - 6.40 = -3.30eV, fo = 1.55 × 10^15 Hz, ( no emission)

K.E(Cs) = 3.10 - 2.10 = -1.0eV, fo = 5.09×10¹⁴ Hz, (emission)

K.E(Be) =3.10-5.0 = -1.90eV, fo = 12.12 ×10^15 Hz.,(no emission)

K.E(Mg) = 3.10-3.70 = -0.6eV, fo = 8.97 × 10¹⁴Hz, (no emission)

K.E(K) = 3.10 - 2.30= 0.9eV, fo = 5.58 × 10¹⁴ Hz, (emission)

So the metals whose electron gain Kinetic energy are:

Cesium

Potassium

Others have zero kinetic energy since no electron is emitted.

Hence the rank is:

K.E(K) > K.E(Cs) > 0 (others)

6 0
2 years ago
a rod of some material 0.20 m long elongates 0.20 mm on heating from 21 to 120°c. determine the value of the linear coefficient
Rufina [12.5K]

Answer:

The value of the linear coefficient of thermal expansion is : α=1.01 *10⁻⁵ (ºC)⁻¹

Explanation:

Li = 0.2m

ΔL = 0.2 mm = 0.0002m

T1 = 21ºC

T2 = 120ºC

ΔT =99ºC

α =ΔL/(Li*ΔT)

α =0.0002m /(0.2m * 99ºC)

α = 1.01 *10⁻⁵   (ºC)⁻¹

4 0
2 years ago
The gravitational force of a star on an orbiting planet 1 is f1. planet 2, which is three times as massive as planet 1 and orbit
Margaret [11]

Let  us consider two bodies having masses m and m' respectively.

Let they are  separated by a distance of r from each other.

As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -  F = G\frac{mm'}{r^{2} }   where G is the gravitational force constant.

From the above we see that F ∝ mm' and F\alpha \frac{1}{r^{2} }

Let the orbital radius of planet  A is r_{1}  = r and mass of planet is m_{1}.

Let the mass of central star is m .

Hence the gravitational force for planet A  is f_{1} =G \frac{m_{1}*m }{r^{2} }

For planet B the orbital radius  r_{2} =2r_{1} and mass m_{2} = 3 m_{1}

Hence the gravitational force f_{2} =G\frac{m m_{2} }{r^{2} }

                                                 f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }

                                                 = \frac{3}{4} G\frac{mm_{1} }{r_{1} ^{2} }

Hence the ratio is  \frac{f_{2} }{f_{1} } = \frac{\frac{3}{4}G mm_{1/r_{1} ^2}  }{Gmm_{1}/r_{1} ^2 }

                                      =\frac{3}{4}     [ ans]


                                                 

                           

3 0
2 years ago
Read 2 more answers
Other questions:
  • At 1 atm pressure, the heat of sublimation of gallium is 277 kj/mol and the heat of vaporization is 271 kj/mol. to the correct n
    13·1 answer
  • Can a force directed north balance a force directed east
    14·1 answer
  • An ice hockey puck is tied by a string to a stake in the ice. the puck is then swung in a circle. what force is producing the ce
    7·2 answers
  • A golf ball is hit by a club. The graph shows the variation with time of the force exerted on the bal
    11·2 answers
  • Bill throws a tennis ball to his dog. He throws the ball at a speed of 15 m/s at an angle of 30° to the horizontal. Assume he th
    10·1 answer
  • Calculate the flux of the vector field F⃗ =−6i⃗ +5x2j⃗ −5k⃗ , through the square of side 8 in the plane y=1, centered on the y-a
    14·1 answer
  • A diffusion couple composed of two silver– gold alloys is formed; these alloys have compositions of 98 wt% Ag–2 wt% Au and 95 wt
    10·1 answer
  • Show your work and resoning for the below requirement.
    12·1 answer
  • Three point charges are positioned on the x axis. If the charges and corresponding positions are +32 µC at x = 0, +20 µC at x =
    11·1 answer
  • ery large accelerations can injure the body, especially if they last for a considerable length of time. One model used to gauge
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!