Answer:
The speed with which the baseball leaves the hand = 20.58 m/s
Explanation:
The time take to reach highest height during a projectile's flight is given by
t = (u sin θ)/g
u = initial velocity of the baseball = ?
θ = angle of throw above the horizontal
g = acceleration due to gravity = 9.8 m/s²
1.05 = (u sin 30)/9.8
u = (1.05 × 9.8)/0.5
u = 20.58 m/s
Let us first know the given: Tennis ball has a mass of 0.003 kg, Soccer ball has a mass of 0.43 kg. Having the same velocity at 16 m/s. First the equation for momentum is P=MV P=Momentum M=Mass V=Velocity. Now let us have the solution for the momentum of tennis ball. Pt=0.003 x 16 m/s= ( kg-m/s ) I use the subscript "t" for tennis. Momentum of Soccer ball Ps= 0.43 x 13m/s = ( km-m/s). If we going to compare the momentum of both balls, the heavier object will surely have a greater momentum because it has a larger mass, unless otherwise the tennis ball with a lesser mass will have a greater velocity to be equal or greater than the momentum of a soccer ball.
Answer:
0.775
Explanation:
The weight of an object on a planet is equal to the gravitational force exerted by the planet on the object:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the object
R is the radius of the planet
For planet A, the weight of the object is

For planet B,

We also know that the weight of the object on the two planets is the same, so

So we can write

We also know that the mass of planet A is only sixty percent that of planet B, so

Substituting,

Now we can elimanate G, MB and m from the equation, and we get

So the ratio between the radii of the two planets is

Calculate q* E * d
<span>Put q = 1.6 x 10^-19 </span>
<span>E = 325 </span>
<span>d = 4.5
I hope this helps!</span>
Answer:
The vapor pressure of cyclohexane at 81.0°C is 101325 Pa.
Explanation:
Given that,
Boiling point = 81.0°C
Atmospheric pressure :
Atmospheric pressure is the force per unit area exerted by the weight of the atmosphere.
The value of atmospheric pressure is

Vapor pressure :
Vapor pressure is equal to the atmospheric pressure.
Hence, The vapor pressure of cyclohexane at 81.0°C is 101325 Pa.