answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yanka [14]
2 years ago
9

A group of students prepare for a robotic competition and build a robot that can launch large spheres of mass M in the horizonta

l direction with variable speed and from a variable vertical position and a fixed horizontal position x=0.
The robot is calibrated by adjusting the speed at which the sphere is launched and the height of the robot’s sphere launcher. Depending on where the spheres land on the ground, students earn points based on the accuracy of the robot. The robot is calibrated so that when the spheres are launched from a vertical position y=H and speed v0, they consistently land on the ground on a target that is at a position x=D. Positive directions for vector quantities are indicated in the figure.

When the students arrive at the competition, it is determined that the height of the sphere launcher can no longer be adjusted due to a mechanical malfunction. Therefore, the spheres must be launched at a vertical position of y=H2. However, the spheres may be launched at speed v0 or 2v0.
Question: In a clear response that may also contain diagrams and/or equations, describe which speed, v0 or 2v0, the students should launch the sphere at so that they earn the maximum number of points in the competition.

Physics
1 answer:
jeyben [28]2 years ago
7 0

Answer:

V_0

Explanation:

Given that, the range covered by the sphere, M, when released by the robot from the height, H, with the horizontal speed V_0 is D as shown in the figure.

The initial velocity in the vertical direction is 0.

Let g be the acceleration due to gravity, which always acts vertically downwards, so, it will not change the horizontal direction of the speed, i.e. V_0 will remain constant throughout the projectile motion.

So, if the time of flight is t, then

D=V_0t\; \cdots (i)

Now, from the equation of motion

s=ut+\frac 1 2 at^2\;\cdots (ii)

Where s is the displacement is the direction of force, u is the initial velocity, a is the constant acceleration and t is time.

Here, s= -H, u=0, and a=-g (negative sign is for taking the sigh convention positive in +y direction as shown in the figure.)

So, from equation (ii),

-H=0\times t +\frac 1 2 (-g)t^2

\Rightarrow H=\frac 1 2 gt^2

\Rightarrow t=\sqrt {\frac {2H}{g}}\;\cdots (iii)

Similarly, for the launched height 2H, the new time of flight, t', is

t'=\sqrt {\frac {4H}{g}}

From equation (iii), we have

\Rightarrow t'=\sqrt 2 t\;\cdots (iv)

Now, the spheres may be launched at speed V_0 or 2V_0.

Let, the distance covered in the x-direction be D_1 for V_0 and D_2 for 2V_0, we have

D_1=V_0t'

D_1=V_0\times \sqrt 2 t [from equation (iv)]

\Rightarrow D_1=\sqrt 2 D [from equation (i)]

\Rightarrow D_1=1.41 D (approximately)

This is in the 3 points range as given in the figure.

Similarly, D_2=2V_0t'

D_2=2V_0\times \sqrt 2 t [from equation (iv)]

\Rightarrow D_2=2\sqrt 2 D [from equation (i)]

\Rightarrow D_2=2.82 D (approximately)

This is out of range, so there is no point for 2V_0.

Hence, students must choose the speed V_0 to launch the sphere to get the maximum number of points.

You might be interested in
The ball will oscillate along the z axis between z=d and z=−d in simple harmonic motion. What will be the angular frequency ω of
Alinara [238K]

Any kind of frequency, including the angular kind, is closely involved with
time. Still, for some unknown reason,you've given us no time information
whatsoever ... a peculiar decision on your part, since we can be sure that
it's right there, inexorably intertwined with the part of the question that you
DID copy and share with us. 

Furthermore and moreover, for one with no prior experience with simple
harmonic motion, the many symbols in this question such as ' d ', ' a ',
' << ', ' d₂ ', and ' a₂ ' would be of no help at all to guide him toward a
solution.  On the contrary, he would conclude that the question itself
had been posted by some alien life form.

To sum up:  Come back and post the drawing that goes along with the
question, make sure you have presented all of the information that the
question includes, and then we'll talk.


5 0
1 year ago
If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don't have time t
sammy [17]

Complete Question

If you are lying down and stand up quickly, you can get dizzy or feel faint. This is because the blood vessels don’t have time to expand to compensate for the blood pressure drop. If your brain is 0.4 m higher than your heart when you are standing, how much lower is your blood pressure at your brain than it is at your heart? The density of blood plasma is about 1025 kg/m3 and a typical maximum (systolic) pressure of the blood at the heart is 120 mm of Hg (= 0.16 atm = 16 kP = 1.6 × 104 N/m2).

Answer:

The pressure at the brain is P_b  = 89.872 \ mm \ of \ Hg

Explanation:

Generally is mathematically denoted as

                  P = \rho gh

Substituting 1025 kg/m^3 for \rho(the  density) , 9.8 m/s^2 for g (acceleration due to gravity) , 0.4m for h (the height )

We have that the pressure difference between the heart and the brain is

              P = 1025 * 9.8 *0.4

                  = 4018 N/m^2

But the pressure of blood at the heart is given as

               P_h=120 mm of Hg = 120 * 133 =  1.59*10^3Pa

Now the pressure at the brain is mathematically evaluated as

                 P_b = P_h - P

                     = 1.596*10^4 - 4018

                     = 11982 N/m^2

                      P_b= \frac{11982}{133} = 89.872 \ mm \ of \ Hg

   

     

3 0
2 years ago
A person walks 25 m west and then 45 m at the angle of 60 degrees north of east what is the magnitude of the total displacement?
expeople1 [14]


To solve this question, we need to use the component method and split our displacements into their x and y vectors. We will assign north and east as the positive directions.

The first movement of 25m west is already split. x = -25m, y = 0m.

The second movement of 45m [E60N] needs to be split using trig.
x = 45cos60 = 22.5m
y = 45sin60 = 39.0m

Then, we add the two x and two y displacements to get the total displacement in each direction.

x = -25m + 22.5m = -2.5m
y = 0m + 39.0m

We can use Pythagorean theorem to find the total displacement.
d² = x² + y²
d = √(-2.5² + 39²)
d = 39.08m

And then we can use tan to find the angle.
inversetan(y/x) = angle
inversetan(39/2.5) = 86.3

Therefore, the total displacement is 39.08m [W86.3N]

8 0
2 years ago
The ends of a massless rope are attached to two stationary objects (e.g., two trees or two cars) so that the rope makes a straig
Virty [35]

Answer:

1. The tension in the rope is everywhere the same.

2. The magnitudes of the forces exerted on the two objects by the rope are the same.

3. The forces exerted on the two objects by the rope must be in opposite directions.

Explanation:

"Massless ropes" do not have a<em> "net force"</em> which means that it is able to transmit the force from one end of the rope to the other end, perfectly. It is known for its property of having a total force of zero. In order to attain this property, the magnitude of the forces exerted on the two stationary objects by the rope are the same and in opposite direction. <u>So this explains number 2 & 3 answers.</u>

Since the objects that are held by the rope are stationary, then this means that the tension in the rope is also stationary. This means that the tension in the rope everywhere is the same (provided that the rope is still or in a straight line, as stated in the situation above, and is being held by two points). <u>So, this explains number 1.</u>

6 0
1 year ago
A 2 000-kg sailboat experiences an eastward force of 3 000 N by the ocean tide and a wind force against its sails with a magnitu
Vesnalui [34]

Answer:

The magnitude of the resultant acceleration is 2.2 m/s^2

Explanation:

Mass (m) of the sailboat =  2000 kg

Force acting on the sailboat due to ocean  tide is F_1 = 3000N

Eastwards means takes place along the positive x direction

ThenF_{1x} = 3000N and F_{1y}= 0

Wind Force acting on the Sailboat isF_2  = 6000N directed towards the northwest that means at an angle  45 degree above the negative x axis

Then  

F_{2x} = -(6000N) cos 45 degree = -4242.6 N

F_{2y}  = (6000N) cos 45 degree = 4242.6 N

Hence  , the net force acting on the sailboat in x direction is  

F_x = F_{1x}+ F_{2x}

=  - 3000 N + 4242.6 N

=  - 3000 N +4242.6 N

= 1242.6N

Net Force acting on the sailboat in y direction is  

F_y = F_{1y}+ F_{2y}

= 0+ 4242.6N

= 4242.6N

The magnitude of the resultant force =

Using pythagorean theorm of 1243 N and 4243 N

\sqrt{(1242.6)^2 + (4242.6)^2

\sqrt{(1544054.76) + (17999654.8)}

\sqrt{(19543709.5)^2}

4420.8 N

F = ma

a = \frac{F}{m}

a =\frac{4420.8}{ 2000}

=2.2 m/s^2

4 0
2 years ago
Other questions:
  • Lorenzo is making a prediction. “I learned that nonmetals increase in reactivity when moving from left to right. So I predict th
    12·2 answers
  • The magnitude of the electrical force acting between a +2.4 × 10–8 C charge and a +1.8 × 10–6 C charge that are separated by 0.0
    5·2 answers
  • An ideal gas is allowed to expand isothermally from 2.00 l at 5.00 atm in two steps:
    8·1 answer
  • A tennis ball is dropped from 1.20 m above the ground. It rebounds to a height of 1.00 m. (a) with what velocity does it hit the
    7·1 answer
  • A uniform metal bar is 5.00 m long and has mass 0.300 kg. The bar is pivoted on a narrow support that is 2.00 m from the left-ha
    8·1 answer
  • A motion sensor is used to create the graph of a student’s horizontal velocity as a function of time as the student moves toward
    8·1 answer
  • A chemist identifies compounds by identifying bright lines in their spectra. She does so by heating the compounds until they glo
    7·1 answer
  • What is the final position of the object if its initial position is x = 0.40 m and the work done on it is equal to 0.21 J? What
    14·1 answer
  • A Micro –Hydro turbine generator is accelerating uniformly from an angular velocity of 610 rpm to its operating angular velocity
    10·1 answer
  • The length of a wire 2.00 m is measured as 2.02m. What is the percentage error in the measurement?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!