Answer:

Explanation:
Missing question:
What is the object's acceleration?
Solution:
The acceleration of an object is given by

where
v is the final velocity
u is the initial velocity
t is the time taken for the change in velocity
For the object in this problem,
u = +25 m/s
v = +15 m/s
t = 2.0 s
Substituting,

And the acceleration is negative because its direction is opposite to that of the velocity.
<span>D) The sun's rays will never be directly overhead. The latitude of 23 ½ degrees north is known as the Tropic of Cancer. Above this imaginary line the sun's rays hit earth with decreased angles.</span>
Refer to the diagram shown below.
When an athlete is in motion, he/she exerts a vertical force (the person's weight, W) on the ground. The ground exerts an equal and opposite force, N, the normal reaction on the athlete, so that W = N.
At the same time, the ground exerts a horizontal force, F, o n the athlete so that he/she does not slip.
The magnitude of the horizontal force is
F = μN = μW
where μ = the dynamic coefficient of friction.
Answer:
The horizontal force is μW,
where
W = the weight of the athlete and,
μ = the dynamic coefficient of friction.
If the car in the opposite direction turns the signal on your vehicle, then it is only likely to give way and let him or her turn before you make your turn because he or she is in the right of way and by doing this, it will prevent any complication from happening and to be able to show respect and politeness in driving.
Answer:
4.9 cm
Explanation:
From Hook's Law,
F = ke......................... Equation 1
Where F= force, e = extension, k = spring constant.
Note: the Force acting on the the spring is the weight of the mass.
W = mg.
F = mg.................... Equation 2
Where m = mass, g = acceleration due to gravity
Substitute equation 2 into equation 1
mg = ke
make e the subject of the equation
e = mg/k............... Equation 3.
Given: m = 2 kg, g = 9.8 m/s², k = 400 N/m
e = (2×9.8)/400
e = 19.6/400
e = 0.049 m
e = 4.9 cm