Answer:
d = 84 m
Explanation:
As we know that when an object moves with uniform acceleration or deceleration then we can use equation of kinematics to find the distance moved by the object
here we know that
initial speed 
final speed 
time taken by the car to stop

now the distance moved by the car before it stop is given as

now we have


75.17 mg of the radioactive substance will remain after 24 hours.
Answer:
Explanation:
Any radioactive substance will obey the exponential decay behavior. So according to this behavior, any radioactive substance will be decaying in terms of exponential form of disintegration constant and Time.
Disintegration constant is the rate of decay of radioactive elements. It can be measured using the half life time of the radioactive element .While half life time is the time taken by any radioactive element to decay half of its concentration. Like in this case, at first the scientist took 200 mg then after 17 hours, it got reduced to 100 g. So the half life time of this element is 17 hours.
Then Disintegration constant = 0.6932/Half Life time
Disintegration constant = 0.6932/17=0.041
Then as per the law of disintegration constant:

Here N is the amount of radioactive element remaining at time t and
is the initial amount of sample, x is the disintegration constant.
So here,
= 200 mg, x = 0.041 and t = 24 hrs.
N = 200 ×
=75.17 mg.
So 75.17 mg of the radioactive substance will remain after 24 hours.
Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>
Answer:
If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Explanation:
R₁ = Resistance of first resistor
R₂ = Resistance of second resistor
V = Voltage of battery = 12 V
I = Current = 0.33 A (series)
I = Current = 1.6 A (parallel)
In series

In parallel


Solving the above quadratic equation


∴ If R₂=25.78 ohm, then R₁=10.58 ohm
If R₂=10.57 then R₁=25.79 ohm
Answer:
Sample Response: If temperature and surface area increase, then the time it takes for sodium bicarbonate to completely dissolve will decrease, because increasing both factors increases the rate of a chemical reaction.
Explanation: