answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
2 years ago
9

An object is thrown with an initial speed v near the surface of Earth. Assume that air resistance is negligible and the gravitat

ional field is constant. An object is thrown with an initial speed u near the surface of Earth. Assume that air resistance is negligible and the gravitational field is constant. If the object is thrown horizontally, the direction and magnitude of its acceleration while it is in the air is _________.a. upward and decreasing b. upward and constant c. downward and decreasing d. downward and increasing e. downward and constant

Physics
2 answers:
IgorLugansk [536]2 years ago
3 0

Answer:

E. downward and constant

Explanation:

Freefall is a special case of motion with constant acceleration because the acceleration due to gravity is always constant and downward. This is true even when an object is thrown upward or has zero velocity.

For example, when a ball is thrown up in the air, the ball's velocity is initially upward. Since gravity pulls the object toward the earth with a constant acceleration ggg, the magnitude of velocity decreases as the ball approaches maximum height. At the highest point in its trajectory, the ball has zero velocity, and the magnitude of velocity increases again as the ball falls back toward the earth.

UNO [17]2 years ago
3 0

Answer:

E. downward and constant

Explanation:

An object in free fall experiences constant acceleration if air resistance is negligible.

You might be interested in
A charge of 5.67 x 10-18 C is placed 3.5 x 10 m away from another charge of - 3.79 x 10 "C
miskamm [114]

Answer:

1. 579 x 10 ^-22N

Explanation:

F = kq1q2/r^2

   = 9.0 x 10^9 x 5.67 x 10^-18 x 3.79 x 10^-18/ (3.5 x 10^-2)^2

    = 1. 579 x 10 ^-22N

6 0
1 year ago
The length of a 60 W, 240 Ω light bulb filament is 60 cm Remembering that the current in the filament is proportional to the ele
faust18 [17]

Answer:

Finally current will be

i = 0.35 A

Explanation:

As we know that power of the bulb is given by the formula

P = \frac{V^2}{R}

now we have

P = 60 W

R = 240 ohm

so we have

60 = \frac{V^2}{240}

V = 120 Volts

now the current in the bulb is given as

i = \frac{V}{R}

i = \frac{120}{240} = 0.5 A

now when length of the filament is double

so the resistance of the wire also gets double

so we have

P = \frac{V^2}{R}

60 = \frac{V^2}{480}

V = 169.7 volts

now the current in the bulb is given as

V = i R

169.7 = i(480)

i = 0.35 A

8 0
2 years ago
The velocity component with which a projectile covers certain horizontal distance is maximum at the moment of? a) Hitting the gr
Crazy boy [7]
A) hitting the ground
3 0
2 years ago
When a car is 100 meters from its starting position traveling at 60.0 m/s., it starts braking and comes to a stop 350 meters fro
NISA [10]
Remember your kinematic equations for constant acceleration. One of the equations is x_{f} =  x_{i} +  v_{i}(t) + \frac{1}{2} at^{2}, where x_{f} = final position, x_{i} = initial position, v_{i} = initial velocity, t = time, and a = acceleration. 

Your initial position is where you initially were before you braked. That means x_{i} = 100m. You final position is where you ended up after t seconds passed, so x_{f} = 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was v_{i} = 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
350\:m = 100\:m + (60.0\:m/s)(8.3\:s) + \frac{1}{2} a(8.3\:s)^{2}\\
250\:m = (60.0\:m/s)(8.3\:s) + \frac{1}{2} a(8.3\:s)^{2}\\
250\:m = 498\:m +34.445\:s^{2}(a)\\
-248\:m = 34.445\:s^{2}(a)\\
a \approx -7.2 \: m/s^{2}

Your acceleration is approximately -7.2 \: m/s^{2}.
4 0
2 years ago
The length of a wire 2.00 m is measured as 2.02m. What is the percentage error in the measurement?
n200080 [17]

Answer:

1%

Explanation:

Percent error can be found by dividing the absolute error (difference between measure and actual value) by the actual value, then multiplying by 100.

Percent Error=\frac{V_{measured}- V_{true} } {V_{true}} *100

The measured value is 2.02 meters and the actual value is 2.00 meters.

V_{measured}=2.02\\\\V_{true}=2.00

Percent Error=\frac{2.02-2.00}{2.00} *100

First, evaluate the fraction. Subtract 2.00 from 2.02

Percent Error=\frac{0.02}{2.00}*100

Next, divide 0.02 by 2.00

PercentError=0.01 *100

Finally, multiply 0.01 and 100.

Percent  Error=1\\Percent  Error= 1 \%

The percent error is 1%.

6 0
2 years ago
Other questions:
  • A tennis ball bounces on the floor three times, and each time it loses 23.0% of its energy due to heating. how high does it boun
    9·1 answer
  • As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
    12·2 answers
  • Compare the density, weight, mass, and volume of a pound of gold to a pound of iron on the surface of Earth.
    11·1 answer
  • Tyson throws a shot put ball weighing 7.26 kg. At a height of 2.1 m above the ground, the mechanical energy of the ball is 172.1
    15·2 answers
  • To penetrate armor, a projectile's point concentrates force in a small area, creating a stress large enough that the armor fails
    5·1 answer
  • A diver named Jacques observes a bubble of air rising from the bottom of a lake (where the absolute pressure is 3.50 atm) to the
    5·1 answer
  • A mirror forms an erect image 40cm from the object and one third its height where must the mirror be situated ​
    12·1 answer
  • A skateboarder traveling at 4.45 m/s can be stopped by a strong force in 1.82 s and by a weak force in 5.34 s.
    5·1 answer
  • A string is stretched by two equal and opposite forces F newton each then the tension in sting is?
    7·1 answer
  • Four students were loading boxes of food collected during a food drive. The force that each student exerted while lifting and th
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!