answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
2 years ago
9

An object is thrown with an initial speed v near the surface of Earth. Assume that air resistance is negligible and the gravitat

ional field is constant. An object is thrown with an initial speed u near the surface of Earth. Assume that air resistance is negligible and the gravitational field is constant. If the object is thrown horizontally, the direction and magnitude of its acceleration while it is in the air is _________.a. upward and decreasing b. upward and constant c. downward and decreasing d. downward and increasing e. downward and constant

Physics
2 answers:
IgorLugansk [536]2 years ago
3 0

Answer:

E. downward and constant

Explanation:

Freefall is a special case of motion with constant acceleration because the acceleration due to gravity is always constant and downward. This is true even when an object is thrown upward or has zero velocity.

For example, when a ball is thrown up in the air, the ball's velocity is initially upward. Since gravity pulls the object toward the earth with a constant acceleration ggg, the magnitude of velocity decreases as the ball approaches maximum height. At the highest point in its trajectory, the ball has zero velocity, and the magnitude of velocity increases again as the ball falls back toward the earth.

UNO [17]2 years ago
3 0

Answer:

E. downward and constant

Explanation:

An object in free fall experiences constant acceleration if air resistance is negligible.

You might be interested in
A spring driven dart gun propels a 10g dart. It is cocked by exerting a force of 20N over a distance of 5cm. With what speed wil
adelina 88 [10]
<span>14 m/s Assuming that all of the energy stored in the spring is transferred to dart, we have 2 equations to take into consideration. 1. How much energy is stored in the spring? 2. How fast will the dart travel with that amount of energy. As for the energy stored, that's a simple matter of multiplication. So: 20 N * 0.05 m = 1 Nm = 1 J For the second part, the energy of a moving object is expressed as KE = 0.5 mv^2 where KE = Kinetic energy m = mass v = velocity Since we now know the energy (in Joules) and mass of the dart, we can substitute the known values and solve for v. So KE = 0.5 mv^2 1 J = 0.5 0.010 kg * v^2 1 kg*m^2/s^2 = 0.005 kg * v^2 200 m^2/s^2 = v^2 14.14213562 m/s = v So the dart will have a velocity of 14 m/s after rounding to 2 significant figures.</span>
6 0
2 years ago
Read 2 more answers
when you drop a pebble from height h, it reaches the ground with kinetic energy k if there is no air resistance. from what heigh
marysya [2.9K]

Answer:

From the initial height h

Explanation:

When a material or substance is drop from a height h, it possesses potential energy, immediately it is dropped from that height, the potential energy is gradually converted to kinetic energy, it gets to a point where the potential energy equals the kinetic energy, as the material touches the ground, all potential energy has been converted to kinetic energy already

6 0
1 year ago
A measuring microscope is used to examine the interference pattern. It is found that the average distance between the centers of
diamong [38]

Answer:

 2n t = m λ₀ ,    R = 0.240 mm

Explanation:

The interference by regency in thin films uses two rays mainly the one reflected on the surface and the one reflected on the inside of the film.

The ray that is reflected in the upper part of the film has a phase change of 180º since the ray stops from a medium with a low refractive index to one with a higher regrading index,

-This phase change is the introduction of a λ/2 change

-The ray passing through the film has a change in wavelength due to the refractive index of the medium

          λ₀ = λ / n

Therefore Taking into account this fact the destructive interference expression introduces an integer phase change, then the extra distance 2t is

        2 t = (m’+ ½ + ½) λ₀ / n

        2t = (m’+1) λ₀ / n

         m = m’+ 1

        2n t = m λ₀

        With   m = 0, 1, 2, ...

Where t is the thickness of the film, n the refractive index of the medium, λ the wavelength

The thickness of a hair is the thickness of the film t

           2R = t

             R = t / 2

             R = 0480/2

              R = 0.240 mm

3 0
2 years ago
If you have to apply 40n of force on a crowbar to lift a rock that weights 400n, what is the actual mechanical advantage of the
Mrrafil [7]
The mechanical advantage is defined as the ratio between the force produced by a machine and the force applied in input:
MA= \frac{F_{out}}{F_{in}}
For the crowbar of the problem, the force applied in input is 40 N, while the force produced in output is equal to the weight of the rock that is lifted, so 400 N. Therefore, the mechanical advantage is
MA= \frac{400 N}{40 N}=10
3 0
2 years ago
Sketch the circuit labeling the meter and bulb as two separate resistors connected in parallel to the voltage source. Then show
Ksenya-84 [330]

Answer:

Show attached picture

Explanation:

Let's call V the voltage provided by the battery in the circuit. M is the multimeter (let's call R_M its internal resistance) and R indicates the resistance of the light bulb.

We know that the meter's internal resistance is 1000 times higher than the bulb's resistance:

R_M = 1000 R (1)

Both  the meter and the bulb are connected in parallel to the battery, so they both have same potential difference at their terminals:

V_M = V_R

Using Ohm's law, V=RI, we can rewrite the previous equation as:

R_M I_M = R I_R

where

I_M is the current in the meter

I_R is the current in the bulb

Using (1), this equation becomes

(1000 R) I_M = R I_R \rightarrow I_M = \frac{I_R}{1000}

so, the current in the meter is 1000 times less than through the bulb.

5 0
2 years ago
Other questions:
  • a 2.0 kg block on an incline at a 60.0 degree angle is held in equilibrium by a horizontal force, what is the magnitude of this
    14·2 answers
  • What is the period of a wave if the wavelength is 100 m and the speed is 200 m/s?
    9·2 answers
  • Walter Arfeuille of Belgium lifted a 281.5 kg load off the ground using his teeth. Suppose Arfeuille can hold just three times t
    13·2 answers
  • A 120-V rms voltage at 1000 Hz is applied to an inductor, a 2.00-μF capacitor and a 100-Ω resistor, all in series. If the rms va
    7·2 answers
  • What is the change in length of a 1400. m steel, (12x10^-6)/(C0) , pipe for a temperature change of 250.0 degrees Celsius? Remem
    11·1 answer
  • A metal sphere with radius R1 has a charge Q1. Take the electric potential to be zero at an infinite distance from the sphere.
    10·1 answer
  • A car traveling at a velocity v can stop in a minimum distance d. What would be the car's minimum stopping distance if it were t
    10·1 answer
  • A solid conducting sphere with radius R that carries positive charge Q is concentric with a very thin insulating shell of radius
    14·1 answer
  • A baseball bat hits a baseball with a force of 100 newtons. What is the force and its direction exerted by the ball on the bat?
    7·1 answer
  • A planet of mass M and radius R has no atmosphere. The escape velocity at its surface is ve. An object of mass m is at rest a di
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!