We are given an electromagnetic wave with a frequency of 5.09 x 10^14 Hz and travelling through a transparent medium. If the medium was vacuum, the speed of the wave would be equal to the speed of light. Otherwise, the main factor that would determine the speed of the wave is its wavelength.
First, torque is equal to force times the distance. for the first force that is applied, the torque is zero because is applied at the hinge. so the net torque:
t = ( 12 N ) ( 0 m ) ( cos 30 ) + ( 12 N ) ( 1.68 m ) cos 45
t = 14.26 Nm is the torque with respect to the hinge
Answer:
A. Increase in temperature is 0.0176 degree Celsius. b. the remaining energy will be lost.
Explanation:
The mass of copper block = 7kg
Initial speed = 4.0 m/s
Specific heat of copper = 0.385 j/g degree Celcius.
a. The increase in temperature is calculated below:

85% of energy is converted into internal energy.

b. The remaining 15 per cent of kinetic energy will be lost and it will be changed into other forms.
Answer:
h = v₀² / 2g
, h = k/4g x²
Explanation:
In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches
Starting point. Lower compressed spring
Em₀ = K = ½ m v²
Final point. Highest on the path
= U = mg h
As or no friction the energy is conserved
Em₀ = Em_{f}
½ m v₀²² = m g h
h = v₀² / 2g
We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse
½ k x² = 2 g h
h = k/4g x²
Answer:
0.775
Explanation:
The weight of an object on a planet is equal to the gravitational force exerted by the planet on the object:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the object
R is the radius of the planet
For planet A, the weight of the object is

For planet B,

We also know that the weight of the object on the two planets is the same, so

So we can write

We also know that the mass of planet A is only sixty percent that of planet B, so

Substituting,

Now we can elimanate G, MB and m from the equation, and we get

So the ratio between the radii of the two planets is
