consider the right direction as positive and left direction as negative.
M = mass of the ball = 5 kg
m = mass of stone = 1.50 kg
= initial velocity of the ball before collision = 0 m/s
= initial velocity of the stone before collision = 12 m/s
= final velocity of the ball after collision = ?
= final velocity of the stone after collision = - 8.50 m/s
using conservation of momentum
M
+ m
= M
+ m
(5) (0) + (1.5) (12) = 5
+ (1.50) (- 8.50)
= 6.15 m/s
h = height gained by the ball
using conservation of energy
Potential energy gained by ball at Top = kinetic energy at the bottom
Mgh = (0.5) M
(9.8) h = (0.5) (6.15)²
h = 1.93 m
Explanation:
A) The distance between the two successive compressions (or rarefactions) is actually called the wavelength of the longitudinal waves.
B) Wavelengths of longitudinal and transverse waves are comparable in the fact that in a transverse wave, the particles move perpendicular to the direction the wave travels whereas in a longitudinal wave the particles are displaced along the direction to the direction the wave travels
Answer:
The heater power required is 2400 W. The power in the heater can be calculated as the product of the voltage line and the steady current:

Explanation:
The initial volume of the gas is

while its final volume is

so its variation of volume is

The pressure is constant, and it is

Therefore the work done by the gas is

where the negative sign means the work is done by the surrounding on the gas.
The heat energy given to the gas is

And the change in internal energy of the gas can be found by using the first law of thermodynamics:

where the positive sign means the internal energy of the gas has increased.
If i remeber correctly when dealing with real world cordinate systems as you rotate around clockwise you move in a positive direction. but all the examples i have done said north was 0 degrees, so i may be wrong