Answer:
The answer to your question is:
Explanation:
Data
Duane Albert
d = 5 m ; v = 3 m/s v = 4.2 m/s
a) b)
Duane's Albert's
d = 5 + (3)t d = 4.2t
d = 5 + 3t
c) 5 + 3t = 4.2t
4.2t - 3t = 5
1.2t = 5
t = 4.17 s
d)
Duane's
d= 5 + 3(4.17)
d = 17.51 m
Alberts
d = 4.2(4.17)
d = 17.51 m
Initial speed, u = 15 m/s
Final speed, v = 10 m/s
Distance traveled, s = 6.0 m
The acceleration, a, is determined from
u² + 2as = v²
(15 m/s)² + 2*(a m/s²)*(6.0 m) = (10 m/s)²
225 + 12a = 100
12a = -125
a = -10.4167 m/s²
The time, t, for the velocity to change from 15 m/s to 10 m/s is given by
(10 m/s) = (15 m/s) - (10.4167 m/s²)*(t s)
10 = 15 - 10.4167t
t = 0.48 s
The average speed is
(6.0 m)/(0.48 s) = 12.5 m/s
Answer: 12.5 m/s
Answer:
a. 
b. 
Explanation:
The inertia can be find using
a.





now to find the torsion constant can use knowing the period of the balance
b.
T=0.5 s

Solve to K'


The change in electric potential energy of the ion is equal to the charge multiplied by the voltage difference:

where the charge q of the na+ ion is equal to one positive charge, so it's equal to the proton charge:

, and Vf and Vi are the final and initial voltages.
Substituting the numbers, we find: