Answer:
option (b)
Explanation:
According to the Pascal's law
F / A = f / a
Where, F is the force on ram, A be the area of ram, f be the force on plunger and a be the area of plunger.
Diameter of ram, D = 20 cm, R = 20 / 2 = 10 cm
A = π R^2 = π x 100 cm^2
F = 3 tons = 3000 kgf
diameter of plunger, d = 3 cm, r = 1.5 cm
a = π x 2.25 cm^2
Use Pascal's law
3000 / π x 100 = f / π x 2.25
f = 67.5 Kgf
R = 0.407Ω.
The resistance R of a particular conductor is related to the resistivity ρ of the material by the equation R = ρL/A, where ρ is the material resistivity, L is the length of the material and A is the cross-sectional area of the material.
To calculate the resistance R of a wire made of a material with resistivity of 3.2x10⁻⁸Ω.m, the length of the wire is 2.5m and its diameter is 0.50mm.
We have to use the equation R = ρL/A but first we have to calculate the cross-sectional area of the wire which is a circle. So, the area of a circle is given by A = πr², with r = d/2. The cross-sectional area of the wire is A = πd²/4. Then:
R =[(3.2x10⁻⁸Ω.m)(2.5m)]/[π(0.5x10⁻³m)²/4]
R = 8x10⁻⁸Ω.m²/1.96x10⁻⁷m²
R = 0.407Ω
The output of the machine is
(output work) = (output force) x (distance)
450 N-m = (output force) x (3 meters)
Divide each side
by 3 meters: Output force = (450 N-m) / (3 m)
= 150 newtons .
With all the information given about the output work, we don't need
to know anything about the input work, or even the fact that we're
dealing with a machine.
It's comforting, though, to look back and notice that the output work
(450 N-m) is not more than the input work (500 N-m). So everything
is nice and hunky-dory.
___________________________________
Well, my goodness !
I didn't even need to go through all of that.
Given:
-- The input force to the machine is 50 newtons.
-- The mechanical advantage of the machine is 3 .
That right there tells us that
-- The output force of the machine is 150 newtons.
We don't need any of the other given information.
Becasue steel particles may contaminate the flour.