<span>It's pretty easy problem once you set it up.
Earth------------P--------------Moon
"P" is where the gravitational forces from both bodies are acting equally on a mass m
Let's define a few distances.
Rep = distance from center of earth to P
Rpm = distance from P to center of moon
Rem = distance from center of earth to center of moon
You are correct to use that equation. If the gravitational forces are equal then
GMearth*m/Rep² = Gm*Mmoon/Rpm²
Mearth/Mmoon = Rep² / Rpm²
Since Rep is what you're looking for we can't touch that. We can however rewrite Rpm to be
Rpm = Rem - Rep
Mearth / Mmoon = Rep² / (Rem - Rep)²
Since Mmoon = 1/81 * Mearth
81 = Rep² / (Rem - Rep)²
Everything is done now. The most complicated part now is the algebra,
so bear with me as we solve for Rep. I may skip some obvious or
too-long-to-type steps.
81*(Rem - Rep)² = Rep²
81*Rep² - 162*Rem*Rep + 81*Rem² = Rep²
80*Rep² - 162*Rem*Rep + 81*Rem² = 0
We use the quadratic formula to solve for Rep:
Rep = (81/80)*Rem ± (9/80)*Rem
Rep = (9/8)*Rem and (9/10)*Rem
Obviously, point P cannot be 9/8 of the way to the moon because it'll be
beyond the moon. Therefore, the logical answer would be 9/10 the way
to the moon or B.
Edit: The great thing about this idealized 2-body problem, James, is
that it is disguised as a problem where you need to know a lot of values
but in reality, a lot of them cancel out once you do the math. Funny
thing is, I never saw this problem in physics during Freshman year. I
saw it orbital mechanics in my junior year in Aerospace Engineering. </span>
sylent_reality
· 8 years ago
Answer: The gas being collected is probably Oxygen
Explanation:
Plants produce oxygen through a process known as photosynthesis by utilizing carbon monoxide, a by-product produced by humans during the process of breathing. Humans also breathe in the oxygen ( by-product of photosynthesis) produced by the plants. Therefore, humans and plants live in a symbiotic relationship.
Photosynthesis is the process plants use to synthesize food from carbon dioxide and water. Sunlight is used as a energy source. Photosynthesis releases oxygen as a byproduct.
At low temperatures, between 0 and 10 degrees Celsius – the enzymes that carry out photosynthesis do not work efficiently, and this decreases the photosynthetic rate.
At medium temperature above 10 degrees Celsius to below 40 degrees Celsius (e.g 27 degrees Celsius), the photosynthetic enzymes work at their optimum levels, so photosynthesis proceeds.
At a temperature above 40 degrees Celsius, the enzymes that carry out photosynthesis lose their shape and functionality, and the photosynthetic rate declines rapidly.
Equation for photosynthesis reaction:
6CO2 + 6H20 + (energy) = C6H12O6 + 6O2
We use the kinematic equations,
(A)
(B)
Here, u is initial velocity, v is final velocity, a is acceleration and t is time.
Given,
,
and
.
Substituting these values in equation (B), we get
.
Therefore from equation (A),

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s
<em>ANSWER</em>
<u>An increase in relative humidity</u>
<em><u>Could you mark me brainliest plz?</u></em>
Answer:
Explanation:
Force of friction at car B ( break was applied by car B ) =μ mg = .65 x 2100 X 9.8 = 13377 N .
work done by friction = 13377 x 7.30 = 97652.1 J
If v be the common velocity of both the cars after collision
kinetic energy of both the cars = 1/2 ( 2100 + 1500 ) x v²
= 1800 v²
so , applying work - energy theory ,
1800 v² = 97652.1
v² = 54.25
v = 7.365 m /s
This is the common velocity of both the cars .
To know the speed of car A , we shall apply law of conservation of momentum .Let the speed of car A before collision be v₁ .
So , momentum before collision = momentum after collision of both the cars
1500 x v₁ = ( 1500 + 2100 ) x 7.365
v₁ = 17.676 m /s
= 63.63 mph .
( b )
yes Car A was crossing speed limit by a difference of
63.63 - 35 = 28.63 mph.