answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TiliK225 [7]
2 years ago
10

A crow drops a 0.11kg clam onto a rocky beach from a height of 9.8m. What is the kinetic energy of the clam when it is 5.0m abov

e the ground? What is its speed at that point?
Physics
1 answer:
svp [43]2 years ago
6 0

Answer:

The kinetic energy of the clam at a height of 5.0 m is 5.19 J and the speed of the clam at that height is 9.71 m/s.

<u>Explanation: </u>

<em>Mechanical energy is constant throughout the travel</em>, we know that <em>mechanical energy is calculated by adding potential energy and kinetic energy</em>. Potential energy = m \times g \times h, Kinetic energy = \frac{1}{2} \times m \times v^{2} and Mechanical energy = m \times g \times h+\frac{1}{2} \times m \times v^{2} Kinetic energy is zero at initial point. Now mechanical energy of clam with m=0.11kg,g=9.81\frac{m}{s^{2}},h=9.8 m is = 0.11×9.81×9.8 = 10.58 J.

Mechanical energy of clam at a height of 5.0 m = 0.11 \times 9.81 \times 5+\frac{1}{2} \times m \times v^{2} =5.39+\frac{1}{2} \times m \times v^{2}. We know that mechanical energy is constant hence, <em>mechanical energy of clam at height 9.8 m is equal to mechanical energy at height 5.0 m</em>. This is represented as following

10.58 = 5.39+\frac{1}{2} \times m \times v^{2} 10.58 – 5.39 =\frac{1}{2} \times m \times v^{2}  5.19 = \frac{1}{2} \times m \times v^{2} kinetic energy of the clam is 5.19 J.

Now speed of the clam at height 5.0 m is 5.19 = \frac{1}{2} \times 0.11 \times v^{2} \frac{5.19 \times 2}{0.11}=v^{2} 94.36 = v^{2} \sqrt{94.36}=v \quad v= 9.71 m/s. The speed of the clam is 9.71 m/s.

You might be interested in
A proton starts from rest and gains 8.35 x 10^-14 joule of kinetic energy as it accelerates between points A and B in an electri
antoniya [11.8K]

Answer:

5.22 x 10^5 V

Explanation:

guessed on castle learning and got it right

6 0
2 years ago
Read 2 more answers
The table shows the decay in a 59 g sample of bismuth 212 overtime.
Vikki [24]

Answer: C

14.75g

Explanation:

Given that the half life time = 60.5s

Let No = initial mass = 59g

N = decayed mass

At time t = 0, No = 59g

At time t = 60.5s,

N = No/2 = 59/2

= 29.5g

At time t = 121

N = 29.5/2 = 14.75g

Therefore N = 14.75g

7 0
2 years ago
A cyclist is riding his bike up a mountain trail. When he starts up the trail, he is going 8 m/s. As the trail gets steeper, he
taurus [48]
-3 m/s
---------
per min

oh I think 8m/s to 3m/s to 0m/s

idk probably -0.08 

7 0
2 years ago
Read 2 more answers
A 44-cm-diameter water tank is filled with 35 cm of water. A 3.0-mm-diameter spigot at the very bottom of the tank is opened and
cricket20 [7]

Answer:

The frequency f = 521.59 Hz

The rate at which the frequency is changing = 186.9 Hz/s

Explanation:

Given that :

Diameter of the tank = 44 cm

Radius of the tank = \frac{d}{2} =\frac{44}{2} = 22 cm

Diameter of the spigot = 3.0 mm

Radius of the spigot = \frac{d}{2} =\frac{3.0}{2} = 1.5 mm

Diameter of the cylinder = 2.0 cm

Radius of the cylinder = \frac{d}{2} = \frac{2.0}{2} = 1.0 cm

Height of the cylinder = 40 cm = 0.40 m

The height of the water in the tank from the spigot = 35 cm = 0.35 m

Velocity at the top of the tank = 0 m/s

From the question given, we need to consider that  the question talks about movement of fluid through an open-closed pipe; as such it obeys Bernoulli's Equation and the constant discharge condition.

The expression for Bernoulli's Equation is as follows:

P_1+\frac{1}{2}pv_1^2+pgy_1=P_2+\frac{1}{2}pv^2_2+pgy_2

pgy_1=\frac{1}{2}pv^2_2 +pgy_2

v_2=\sqrt{2g(y_1-y_2)}

where;

P₁ and P₂ = initial and final pressure.

v₁ and v₂ = initial and final fluid velocity

y₁ and y₂ = initial and final height

p = density

g = acceleration due to gravity

So, from our given parameters; let's replace

v₁ = 0 m/s ; y₁ = 0.35 m ; y₂ = 0 m ; g = 9.8 m/s²

∴ we have:

v₂ = \sqrt{2*9.8*(0.35-0)}

v₂ = \sqrt {6.86}

v₂ = 2.61916

v₂ ≅ 2.62 m/s

Similarly, using the expression of the continuity for water flowing through the spigot into the cylinder; we have:

v₂A₂ = v₃A₃

v₂r₂² = v₃r₃²

where;

v₂r₂ = velocity of the fluid and radius at the spigot

v₃r₃ = velocity of the fluid and radius at the cylinder

v_3 = \frac{v_2r_2^2}{v_3^2}

where;

v₂ = 2.62 m/s

r₂ = 1.5 mm

r₃ = 1.0 cm

we have;

v₃ = (2.62  m/s)* (\frac{1.5mm^2}{1.0mm^2} )

v₃ = 0.0589 m/s

∴ velocity  of the fluid in the cylinder =  0.0589 m/s

So, in an open-closed system we are dealing with; the frequency can be calculated by using the expression;

f=\frac{v_s}{4(h-v_3t)}

where;

v_s = velocity of sound

h = height of the fluid

v₃ = velocity  of the fluid in the cylinder

f=\frac{343}{4(0.40-(0.0589)(0.4)}

f= \frac{343}{0.6576}

f = 521.59 Hz

∴ The frequency f = 521.59 Hz

b)

What are the rate at which the frequency is changing (Hz/s) when the cylinder has been filling for 4.0 s?

The rate at which the frequency is changing is related to the function of time (t) and as such:

\frac{df}{dt}= \frac{d}{dt}(\frac{v_s}{4}(h-v_3t)^{-1})

\frac{df}{dt}= -\frac{v_s}{4}(h-v_3t)^2(-v_3)

\frac{df}{dt}= \frac{v_sv_3}{4(h-v_3t)^2}

where;

v_s (velocity of sound) = 343 m/s

v₃ (velocity  of the fluid in the cylinder) = 0.0589 m/s

h (height of the cylinder) = 0.40 m

t (time) = 4.0 s

Substituting our values; we have ;

\frac{df}{dt}= \frac{343*0.0589}{4(0.4-(0.0589*4.0))^2}

= 186.873

≅ 186.9 Hz/s

∴ The rate at which the frequency is changing = 186.9 Hz/s  when the cylinder has been filling for 4.0 s.

8 0
2 years ago
An NFL place kicker is practicing his extra-point kicks. He kicks
Nezavi [6.7K]

Answer:

83 mph

Explanation:

We are told that the collision is perfect elastic, this means that no energy whatsoever was lost in the process.

We can apply the principle of conservation of momentum. It states that the total final momentum is equal to the total initial momentum in a system.

Hence, if the mass of the wall is assumed to be M and the mass of the ball is assumed to be m, we have that:

(M * V) + (m * v) = (M * U) + (m * u)

Where V = final velocity of Wall = 0 mph

v = final velocity of ball

U = initial velocity of wall = 0 mph

u = initial velocity of ball = 83 mph

Hence:

(M * 0) + (m * v) = (M * 0) + (m * 83)

=> mv = m * 83

=> v = 83 mph

The ball would have a final velocity of 83 mph.

5 0
2 years ago
Other questions:
  • Draw the vector C⃗ =1.5A⃗ −3B⃗ . The length and orientation of the vector will be graded. The location of the vector is not impo
    9·2 answers
  • Can a small child play with fat child on the seesaw?Explain how?
    14·2 answers
  • If it takes an airplane 15 minutes to go from 30 mph to 330 mph, what is its acceleration?
    13·1 answer
  • A person travels distance πR along the circumference
    6·2 answers
  • You start with spring that's already been stretched an unknown amount from equilibrium. After stretching it an additional 2.0 cm
    6·1 answer
  • Which description best explains a molecular bonding?
    5·1 answer
  • Calculate the energy in the form of heat (in kJ) required to change 75.0 g of liquid water at 27.0 °C to ice at –20.0 °C. Assume
    15·1 answer
  • The microwaves in a microwave oven are produced in a special tube called a magnetron. The electrons orbit in a magnetic field of
    15·1 answer
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
  • . A horizontal steel spring has a spring constant of 40.0 N/m. What force must be applied to the spring in order to compress it
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!