answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vampirchik [111]
1 year ago
12

The box leaves position x=0 with speed v0. The box is slowed by a constant frictional force until it comes to rest at position x

=x1. Find Ff, the magnitude of the average frictional force that acts on the box. (Since you don't know the coefficient of friction, don't include it in your answer.) Express the frictional force in terms of m, v0, and x1.
Physics
1 answer:
jenyasd209 [6]1 year ago
3 0

Answer:

a= Vo²/(2X₁)

Fr= mVo²/(2X₁)

Explanation:

Given that

Initial velocity = Vo

As we know that friction always tried to oppose the motion of the object.That is why acceleration due to friction acts opposite to the motion of the object.Lets take acceleration is a.

We also know that

v²=u²+ 2 a s

v=final speed

u=initial speed

a= acceleration

s= distance

Here given that final speed is zero.

So

0²=Vo² - 2 x a x X₁  ( negative sign because acceleration in the opposite to the displacement)

a= Vo²/(2X₁)

So the average friction force Fr

Fr= m a

Fr= mVo²/(2X₁)

You might be interested in
When driving in heavy rain, or on a flooded road, your tires can ride on a thin film of water like skis;
Simora [160]
The answer is letter a. It is best to slow down in situations of heavy rain or flooded road as skid could be the result if you lose out of control because the driver isn't slowing down. That is why it is being said that tires can ride on a thin film of water skis as it could skid if it has lost control if the driver hadn't slowed down.
7 0
2 years ago
Which statement about energy conservation BEST explains why a bouncing basketball will not remain in motion forever?
bearhunter [10]

Answer: d

Explanation:

7 0
1 year ago
Table 2.4 shows how the dispacement of a runner changed during a sprint race. Draw a dispacement-time graph to show this data, a
GalinKa [24]
4. Table 2.4 shows how the displacement of a runner changed
during a sprint race. Draw a displacement–time graph to show
this data, and use it to deduce the runner’s speed in the middle
of the race.
Table 2.4 Data for a sprinter during a race
Displacement
(m)
0 4 10 20 50 80 105
Time (s) 1 2 3 6 9 12
8 0
1 year ago
calculate the time rate of change in air density during expiration. Assume that the lung has a total volume of 6000mL, the diame
kipiarov [429]

Answer:

The time rate of change in air density during expiration is 0.01003kg/m³-s

Explanation:

Given that,

Lung total capacity V = 6000mL = 6 × 10⁻³m³

Air density p = 1.225kg/m³

diameter of the trachea is 18mm = 0.018m

Velocity v = 20cm/s = 0.20m/s

dv /dt = -100mL/s (volume rate decrease)

= 10⁻⁴m³/s

Area for trachea =

\frac{\pi }{4} d^2\\= 0.785\times 0.018^2\\= 2.5434 \times10^-^4m^2

0 - p × Area for trachea =

\frac{d}{dt} (pv)=v\frac{ds}{dt} + p\frac{dv}{dt}

-1.225\times2.5434\times10^-^4\times0.20=6\times10^-^3\frac{ds}{dt} +1.225(-1\times10^-^4)

-1.225\times2.5434\times10^-^4\times0.20=6\times10^-^3\frac{ds}{dt} +1.225(-1\times10^-^4)

⇒-0.623133\times10^-^4+1.225\times10^-^4=6\times10^-^3\frac{ds}{dt}

           \frac{ds}{dt} = \frac{0.6018\times10^-^4}{6\times10^-^3} \\\\= 0.01003kg/m^3-s

ds/dt = 0.01003kg/m³-s

Thus, the time rate of change in air density during expiration is 0.01003kg/m³-s

3 0
1 year ago
Read 2 more answers
When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportional t
antoniya [11.8K]

Answer:

Intensity of beam 18 feet below the surface is about 0.02%

Explanation:

Using Lambert's law

Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium

then dI / I = kdt

taking log,

ln(I) = kt + ln C

I = Ce^kt

t=0=>I=I(0)=>C=I(0)

I = I(0)e^kt

t=3 & I=0.25I(0)=>0.25=e^3k

k = ln(0.25)/3

k = -1.386/3

k = -0.4621

I = I(0)e^(-0.4621t)

I(18) = I(0)e^(-0.4621*18)

I(18) = 0.00024413I(0)

Intensity of beam 18 feet below the surface is about 0.2%

3 0
1 year ago
Other questions:
  • The inventor of the photographic process in which a photograph produced without a negative by exposing objects to light on light
    9·2 answers
  • How many neutrons are contained in 2 kg? Mass of one neutron is 1.67x10-27 kg.
    5·1 answer
  • A solenoid that is 35 cm long and contains 450 circular coils 2.0 cm in diameter carries a 1.75-A current. (a) What is the magne
    9·2 answers
  • A mover pushes a 255 kg piano
    14·1 answer
  • A 3.00-kg ball swings rapidly in a complete vertical circle of radius 2.00 m by a light string that is fixed at one end. The bal
    5·1 answer
  • Your teacher burns a piece of steel wool in class, demonstrating the chemical property, flammability. You are curious to see wha
    12·1 answer
  • UDAY WAS TOLD TO PUT SOME CONTAINERS IN ONE OF THE COLD STORES AT WORK. THE LABLES ON THE CONTAINERS READ STORE BELOW -5 C.THERE
    13·1 answer
  • A cubical shell with edges of length a is positioned so that two adjacent sides of one face are coincident with the +x and +y ax
    8·1 answer
  • A projectile was launched horizontally with a velocity of 468 m/s, 1.86 m above the ground. Calculate how long it would take for
    14·2 answers
  • The index of refraction of water is 1.33. If you (or a fish) were under calm water swimming in the daytime, looking upward you w
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!