answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
2 years ago
12

When Aditya pushes on Rachel and her bicycle, they accelerate at 0.22 m/s/s. If Aditya pushes on Rachel and her bicycle with twi

ce as much force, then her
acceleration will be?

A. 1/4 as much
B. 1/2 as much
C. twice as much
D. the same
Physics
1 answer:
lord [1]2 years ago
4 0
I think it’s D but I’m not sure
You might be interested in
A 3-cm high object is in front of a thin lens. The object distance is 4 cm and the image distance is –8 cm. (a) What is the foca
xenn [34]

Answer:

a) Focal length of the lens is 8 cm which is a convex lens

b) 6 cm

c) The lens is a convex lens and produces a virtual image which is upright and two times larger than the object.

Explanation:

u = Object distance =  4 cm

v = Image distance = -8 cm

f = Focal length

Lens Equation

\frac{1}{f}=\frac{1}{u}+\frac{1}{v}\\\Rightarrow \frac{1}{f}=\frac{1}{4}+\frac{1}{-8}\\\Rightarrow \frac{1}{f}=\frac{1}{8}\\\Rightarrow f=\frac{8}{1}=-8\ cm

a) Focal length of the lens is 8 cm which is a convex lens

Magnification

m=-\frac{v}{u}\\\Rightarrow m=-\frac{-8}{4}\\\Rightarrow m=2

b) Height of image is 2×3 = 6 cm

Since magnification is positive the image upright

c) The lens is a convex lens and produces a virtual image which is upright and two times larger than the object.

8 0
2 years ago
A 5.0-kg rock and a 3.0 × 10−4-kg pebble are held near the surface of the earth.(a)Determine the magnitude of the gravitational
a_sh-v [17]

Answer:

a). Determine the magnitude of the gravitational force exerted on each by the earth.

Rock: F = 49.06N

Pebble: F = 29.44N

(b)Calculate the magnitude of the acceleration of each object when released.

Rock: a =9.8m/s^{2}

Pebble:  a =9.8m/s^{2}

Explanation:

The universal law of gravitation is defined as:

F = G\frac{m1m2}{r^{2}}  (1)

Where G is the gravitational constant, m1 and m2 are the masses of the two objects and r is the distance between them.

<em>Case for the rock </em>m = 5.0 Kg<em>:</em>

m1 will be equal to the mass of the Earth m1 = 5.972×10^{24} Kg and since the rock and the pebble are held near the surface of the Earth, then, r will be equal to the radius of the Earth r = 6371000m.

F = (6.67x10^{-11}kg.m/s^{2}.m^{2}/kg^{2})\frac{(5.972x10^{24} Kg)(5.0 Kg)}{(6371000 m)^{2}}

F = 49.06N

Newton's second law can be used to know the acceleration.

F = ma

a =\frac{F}{m} (2)

a =\frac{(49.06 Kg.m/s^{2})}{(5.0 Kg)}

a =9.8m/s^{2}

<em>Case for the pebble </em>m = 3.0 Kg<em>:</em>

F = (6.67x10^{-11}kg.m/s^{2}.m^{2}/kg^{2})\frac{(5.972x10^{24} Kg)(3.0 Kg)}{(6371000 m)^{2}}

F = 29.44N

a =\frac{F}{m}

a =\frac{(29.44 Kg.m/s^{2})}{(3.0 Kg)}

a =9.8m/s^{2}

3 0
2 years ago
Read 2 more answers
A large solar panel on a spacecraft in Earth orbit produces 1.0 kW of power when the panel is turned toward the sun. What power
Mandarinka [93]

Answer:

e*P_s = 11 W

Explanation:

Given:

- e*P = 1.0 KW

- r_s = 9.5*r_e

- e is the efficiency of the panels

Find:

What power would the solar cell produce if the spacecraft were in orbit around Saturn

Solution:

- We use the relation between the intensity I and distance of light:

                                  I_1 / I_2 = ( r_2 / r_1 ) ^2

- The intensity of sun light at Saturn's orbit can be expressed as:

                                  I_s = I_e * ( r_e / r_s ) ^2

                                  I_s = ( 1.0 KW / e*a) * ( 1 / 9.5 )^2

                                  I_s = 11 W / e*a

- We know that P = I*a, hence we have:

                                  P_s = I_s*a

                                  P_s = 11 W / e

Hence,                       e*P_s = 11 W

3 0
2 years ago
Which method should be used to determine which type of natural event produces the greatest number of sand dunes?
jeka94

Answer:

Stabilizing dunes involves multiple actions. Planting vegetation reduces the impact of wind and water. Wooden sand fences can help retain sand and other material needed for a healthy sand dune ecosystem. Footpaths protect dunes from damage from foot traffic.

Explanation:

5 0
2 years ago
What is the longest wavelength light capable of ionizing a hydrogen atom in the ground state?
Sindrei [870]

Answer:

9.12\cdot 10^{-8} m

Explanation:

The energy needed to ionize a hydrogen atom in the ground state is:

E=13.6 eV= 2.18\cdot 10^{-18}J

The energy of the photon is related to the wavelength by

E=\frac{hc}{\lambda}

where

h is the Planck constant

c is the speed of light

\lambda is the wavelength

Solving the formula for the wavelength, we find

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{2.18\cdot 10^{-18}J}=9.12\cdot 10^{-8} m

7 0
2 years ago
Other questions:
  • A baseball m=.34kg is spun vertically on a massless string of length l=.52m. the string can only support a tension of tmax=9.9n
    13·2 answers
  • Given three capacitors, c1 = 2.0 μf, c2 = 1.5 μf, and c3 = 3.0 μf, what arrangement of parallel and series connections with a 12
    12·1 answer
  • Which of the following is NOT a good way to reduce fuel consumption?
    15·2 answers
  • Calculate the minimum average power output necessary for a person to run up a 12.0 m long hillside, which is inclined at 25.0° a
    14·1 answer
  • A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.
    11·1 answer
  • A person fishing from a pier observes that 6 wave crests pass by in 8.0 s and estimates the distance between two successive cres
    7·1 answer
  • A ball is thrown upward from the top of a 25.0 m tall building. The ball’s initial speed is 12.0 m/sec. At the same instant, a p
    10·1 answer
  • Determine the values of mm and nn when the following average distance from the Sun to the Earth is written in scientific notatio
    5·1 answer
  • An uncharged 30.0-µF capacitor is connected in series with a 25.0-Ω resistor, a DC battery, and an open switch. The battery has
    7·2 answers
  • In 2016 there were 2025 reported collisions between trains and cars that’s resulted in 265 fatalities. Explain the change in kin
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!