Taro's error is when he stated that the total energy of the ball and the club system is increasing. This is not true. The total energy of the system is not increasing. According to the first law of thermodynamics, <span>total energy of a system is always constant; energy can be transformed from one form to another however it cannot be created or destroyed. </span><span>Energy is conserved. </span>So, for this problem the total energy of the system should remain constant at all times.
Lucite has a refractive index of n=1.50. This means that the speed of the light in lucite is decreased according to:

where

is the speed of light in air. Putting the number in the formula, we find that the speed of light in lucite is

The frequency of the light is

, so now we can calculate the wavelength in lucite by using the formula:

<span>Therefore, the correct answer is (2) 393 nm.</span>
Work = Force x Distance
47.2J = 23.3N x d
d = 47.2/23.3
d = 2.0258 m
hope this helps :P
Answer:
D) No, since kinetic energy is not conserved.
Explanation:
Since momentum is always conserved in all collision
so in Y direction we can say


Now similarly in X direction we will have


now final kinetic energy of both puck after collision is given as


initial kinetic energy of both pucks is given as


since KE is decreased here so it must be inelastic collision
D) No, since kinetic energy is not conserved.
Answer: f=150cm in water and f=60cm in air.
Explanation: Focal length is a measurement of how strong light is converged or diverged by a system. To find the variable, it can be used the formula:
= (nglass - ni)(
-
).
nglass is the index of refraction of the glass;
ni is the index of refraction of the medium you want, water in this case;
R1 is the curvature through which light enters the lens;
R2 is the curvature of the surface which it exits the lens;
Substituting and calculating for water (nwater = 1.3):
= (1.5 - 1.3)(
-
)
= 0.2(
)
f =
= 150
For air (nair = 1):
= (1.5 - 1)(
-
)
f =
= 60
In water, the focal length of the lens is f = 150cm.
In air, f = 60cm.