answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
2 years ago
13

A cleaver physics professor wants to create a situation where a block starts from rest at the top of a 31.0° inclined plane and

encounters a spring at the bottom of the incline. The spring has a constant 3.4 kN/m and the block's mass is 33.0 kg. How far does the block travel before hitting the spring, if the spring was compressed 37 cm in it's initial collision?
Physics
1 answer:
UNO [17]2 years ago
8 0

Answer:

Explanation:

Let the length of inclined plane be L .

work done by gravity on the block

= force x length of path

= mg sinθ x L , m is mass of the block , θ is inclination of path

This in converted into potential energy of compressed spring

1/2 k x² = mgL sin31  , k is force constant . x is compression

.5 x 3400 x .37² = 33 x9.8 x sin31 L

L = 1.4

Length of incline = 1.4 m .

You might be interested in
A 56 kg diver runs and dives from the edge of a cliff into the water which is located 4.0 m below. If she is moving at 8.0 m/s t
Reil [10]

Answer:

1) 2197.44 J

2) 0 J

3) 2197.44 J = Constant

4) 2197.44 J

5) Approximately 8.86 m/s

Explanation:

The given parameters are;

The mass of the diver, m = 56 kg

The height of the cliff, h = 4.0 m

The speed with which the diver is moving, vₓ = 8.0 m/s

The gravitational potential energy = Mass, m × Height of the cliff, h × Acceleration due to gravity, g

1) Her gravitational potential energy = 56 × 4.0 × 9.81 = 2197.44 J

2) The kinetic energy = 1/2·m·u²

Where;

u = Her initial velocity = 0 when she just leaves the cliff

Therefore;

Her kinetic energy when she just leaves the cliff = 1/2 × 56 × 0² = 0 J

3) The total mechanical energy = Kinetic energy + Potential energy

The total mechanical energy is constant

Her total mechanical energy relative to the water surface when she leaves the cliff = Her gravitational potential energy = 2197.44 J = Constant

4) Her total mechanical energy relative to the water surface just before she enters the water = 2197.44 J

5) The speed with which she enters the water, v, is given from, v² = u² + 2·g·h

Where;

u = The initial velocity at the top of the cliff before she jumps= 0 m/s

∴ v² = 0² + 2 × 9.81 × 4 = 78.48

v = √78.48 ≈ 8.86 m/s

The speed with which she enters the water, v ≈ 8.86 m/s

7 0
1 year ago
The descriptions below explain two ways that water is used by plants on a sunny day. I. In a process called transpiration, some
grigory [225]
In photosynthesis, the water is being used to create food for the plant (Glucose). In transpiration the water is going from a liquid to a gas that's being released.
4 1
2 years ago
Read 2 more answers
The model of the atom has changed as scientists have gathered new evidence. Four models of the atom are shown below, but one imp
nexus9112 [7]

Answer: Dalton’s model

Explanation:

In the attached image we can see four atomic models labeled with four letters:

W represents the current and accepeted atomic model: a nucleus with an electron cloud, where the orbit and position of the electrons around the nucleus is defined by specific regions (associated with specific energy levels) where there is a greater probability of finding the electron at any given moment. It is important to note this model was improved by the works in quantum physics done by Louis de Broglie and Erwin Schrodinger.

X represents Rutherford's model (This model was proposed after Thomson's model). Ernest Rutherford conducted a series of experiments in order to corroborate Thomson's atomic model. However the results of the experiment led him to find out there is a concentration of charge in the atom's core (which was later called nucleus) surrounded by electrons.  This lead to a new atomic model, in which the atom has a positive charged nucleus surrounded by negative charged particles that move similar to the orbit of the planet around the Sun.

Y represents Thomson's model, also called  the <em>plum pudding</em> model. This scientific found out that atoms contain small subatomic particles with a negative charge (later called electrons). However, taking into consideration that at that time there was still no evidence of the atom nucleus, Thomson thought the electrons were immersed in the atom of positive charge that counteracted the negative charge of the electrons. Just like the raisins embedded in a pudding or bread.

Z represents Bohr's model. This model was proposed by the danish physicist Niels Bohr after Rutherford's model. In fact, this model was Rutherford's model with the following addition: electrons orbit the nucleus (like planets around the sun) in specific orbits at different energy levels around the nucleus.

So, the only missing model is <u>Dalton's model</u>, which was the first atomic model:  the atom represented as a solid, indestructible and indivisible mass. An idea that was already accepted by that time since the ancient Greeks.

4 0
2 years ago
Read 2 more answers
Many birds can attain very high speeds when diving. Using radar, scientists measured the altitude of a barn swallow in a vertica
scoray [572]

Answer:

0.109

Explanation:

8 0
2 years ago
The PVT behavior of a certain gas is described by the equation of state: P(V − b) = RT where b is a constant. If in addition CV
alexdok [17]

Answer:

shown in the attachment

Explanation:

The detailed step by step and necessary mathematical application is as shown in the attachment.

6 0
2 years ago
Other questions:
  • While dragging a crate a workman exerts a force of 628 N. Later, the mass of the crate is increased by a factor of 3.8. If the w
    10·2 answers
  • Iron(II) carbonate (FeCO3) has a solubility product constant of 3.13 x 10-11 . Calculate the molar solubility of FeCO3 in water
    11·1 answer
  • Consider two objects whose masses are 100 g and 200 g. The smaller object strikes the larger object with a force of 500 N. Accor
    11·2 answers
  • A gannet is a seabird that fishes by diving from a great height
    12·1 answer
  • The temperature, T, of a gas is jointly proportional to the pressure P of the gas and the volume V occupied by the gas. Use C as
    12·1 answer
  • Suppose 1 kg of Hydrogen is converted into Helium. a) What is the mass of the He produced? b) How much energy is released in thi
    11·2 answers
  • A neutral K meson at rest decays into two π mesons, which travel in opposite directions along the x axis with speeds of 0.828c.
    6·2 answers
  • Compare these two collisions of a PE student with a wall.
    15·1 answer
  • The spring is now compressed so that the unconstrained end moves from x=0 to x=L. Using the work integral W=∫xfxiF⃗ (x⃗ )⋅dx⃗ ,
    6·1 answer
  • How does the sun transfer energy to Earth?
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!