answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
1 year ago
12

The temperature, T, of a gas is jointly proportional to the pressure P of the gas and the volume V occupied by the gas. Use C as

your proportionality constant. (a) Express the temperature in terms of the pressure and the volume.
Physics
1 answer:
AnnZ [28]1 year ago
3 0

Answer:

T=C*P*V

Explanation:

It is said that a variable - let's call 'y' -, is proportional to another - let's call it 'x' - if x and y are multiplicatively connected to a constant 'C'. It means that their product (x*y) can be always equaled to the constant 'C' or their division (\frac{x}{y}) can be always equaled to 'C'. The first case is the case of the inverse proportionality: It is said that x and y are inversely proportional if

x*y=C

The second case is the case of the direct proportionality: It is said that x and y are directly proportional if

\frac{x}{y} =C : x is directly proportional to y.

or

\frac{y}{x} =C : y is directly proportional to x.

Always that any text does not specify about directly or inversely proportionality, it is assumed to mean directly automatically.

For our case, we are said that the temperature T is proportional to the pressure P and the volume V (we assume that it means directly); it is a double proportionality but follows the same rules:

If T were just proportional to P, we would have:

\frac{T}{P} =C

If T were just proportional to V, we would have:

\frac{T}{V} =C

As T is proportional to both P and V, the right equation is:

\frac{T}{P*V}=C

In order to isolate the temperature, let's multiply (P*V) at each side of the equation:

\frac{T}{P*V}*(P*V)=C*(P*V)\\T=C*P*V

You might be interested in
A 0.300kg glider is moving to the right on a frictionless, ­horizontal air track with a speed of 0.800m/s when it makes a head-o
e-lub [12.9K]

Answer:

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

0.010935 J

0.0858675 J

Explanation:

m_1 = Mass of first glider = 0.3 kg

m_2 = Mass of second glider = 0.15 kg

u_1 = Initial Velocity of first glider = 0.8 m/s

u_2 = Initial Velocity of second glider = 0 m/s

v_1 = Final Velocity of first glider

v_2 = Final Velocity of second glider

As momentum and Energy is conserved

m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}

{\tfrac {1}{2}}m_{1}u_{1}^{2}+{\tfrac {1}{2}}m_{2}u_{2}^{2}={\tfrac {1}{2}}m_{1}v_{1}^{2}+{\tfrac {1}{2}}m_{2}v_{2}^{2}

From the two equations we get

v_{1}=\frac{m_1-m_2}{m_1+m_2}u_{1}+\frac{2m_2}{m_1+m_2}u_2\\\Rightarrow v_1=\frac{0.3-0.15}{0.3+0.15}\times 0.8+\frac{2\times 0.15}{0.3+0.15}\times 0\\\Rightarrow v_1=0.27\ m/s

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

v_{2}=\frac{2m_1}{m_1+m_2}u_{1}+\frac{m_2-m_1}{m_1+m_2}u_2\\\Rightarrow v_2=\frac{2\times 0.3}{0.3+0.15}\times 0.8+\frac{0.3-0.15}{0.3+0.15}\times 0\\\Rightarrow v_2=1.067\ m/s

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

Kinetic energy is given by

K=\frac{1}{2}m_1v_1^2\\\Rightarrow K=\frac{1}{2}0.3\times 0.27^2\\\Rightarrow K=0.010935\ J

Final kinetic energy of first glider is 0.010935 J

K=\frac{1}{2}m_2v_2^2\\\Rightarrow K=\frac{1}{2}0.15\times 1.07^2\\\Rightarrow K=0.0858675\ J

Final kinetic energy of second glider is 0.0858675 J

6 0
2 years ago
Select the correct answer from each drop-down menu. A baking tray is made of metal because it’s of heat. An oven mitt is used to
Margarita [4]

An oven mitt is used to take the tray out of the oven because it’s an insulator.

5 0
2 years ago
Read 2 more answers
for a given initial projectile speed, you observe that the projectile has a certain range R at a launch angle of a = 30. For wha
VLD [36.1K]

Answer:

The other angle is 30 degrees.

Explanation:

The range of projectile is given by :

R=\dfrac{u^2\ \sin2\theta}{g}

Here,

u is the speed of launch of projectile

Here, \theta=30^{\circ}

We need to find the other launch angle when the projectile have the same range, such that,

\dfrac{u^2\ \sin(60)}{g}=\dfrac{u^2\ \sin2\alpha}{g}

\sin(60)=\sin2\alpha

\dfrac{\sqrt3}{2}=\sin2\alpha

\alpha =30^{\circ}

So, the other angle is 30 degrees. Hence, this is the required solution.

3 0
2 years ago
Why does carpet tend to produce differences in static electricity more that hardwood or tile floors
Makovka662 [10]

Answer:

This is because the rubbing releases negative charges, called electrons, which can build up on one object to produce a static charge. For example, when you shuffle your feet across a carpet, electrons can transfer onto you, building up a static charge on your skin.

Explanation:

This is because the rubbing releases negative charges

4 0
2 years ago
A child’s toy rake is held so that its resistance length is 0.85 meters. If the mechanical advantage is 0.43, what is the effort
mart [117]

Answer:

1.28

Explanation:

7 0
1 year ago
Other questions:
  • Which sequence correctly shows how stars form?
    8·2 answers
  • A solution is oversaturated with solute. Which could be done to decrease the oversaturation?
    13·2 answers
  • Fill in the blanks to correctly complete the statement. The motion of an object moving with uniform circular motion is always to
    10·2 answers
  • A migrating robin flies due north with a speed of 12 m/s relative to the air. The air moves due east with a speed of 6.8 m/s rel
    11·1 answer
  • A projectile of mass m1 moving with speed v1 in the +x direction strikes a stationary target of mass m2 head-on. The collision i
    10·1 answer
  • The howler monkey is the loudest land animal and, under some circumstances, can be heard up to a distance of 8.9 km. Assume the
    12·1 answer
  • If the lattice constant of silicon is 5.43 Å, calculate?
    7·1 answer
  • A child is playing with a spring toy, first stretching and then compressing it.
    10·1 answer
  • You are working on a laboratory device that includes a small sphere with a large electric charge Q. Because of this charged sphe
    10·1 answer
  • Write a hypothesis about the effect of the fan speed on the acceleration of the cart. Use the "if . . . then . . . because . . .
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!