Answer:
Smaller refractive power
Explanation:
The refractive power of an eye is the extent to which it can converge or diverge the light rays.
Near point is the the closest point for an eye such that when an object is placed at that point the image it forms is sharp and clearly visible to the eye.
A the person ages, the ciliary muscles of the eyes weakens and as a result the lens contracts and the formation of the image takes place behind the retina instead of forming at the retina.
Thus the near point also increases and the refractive power becomes smaller.
Answer:
U = 12,205.5 J
Explanation:
In order to calculate the internal energy of an ideal gas, you take into account the following formula:
(1)
U: internal energy
R: ideal gas constant = 8.135 J(mol.K)
n: number of moles = 10 mol
T: temperature of the gas = 100K
You replace the values of the parameters in the equation (1):

The total internal energy of 10 mol of Oxygen at 100K is 12,205.5 J
Answer:
Explanation:
We shall apply Pascal's Law in fluid mechanics
According to it , pressure is transmitted in liquid from one point to another without any change .
25 cm diameter = 12.5 x 10⁻² m radius
Area = 3.14 x (12.5 x 10⁻²)²
= 490.625 x 10⁻⁴ m²
Pressure by vehicle
Force / area
13000 / 490.625 x 10⁻⁴
= 26.497 x 10⁴ Pa
5 cm diameter = 2.5 x 10⁻² radius
area = 3.14 x (2.5 x 10⁻²)²
= 19.625 x 10⁻⁴ m²
If we assume required force F on this area
Pressure = F / 19.625 x 10⁻⁴ Pa
According to Pascal Law
F / 19.625 x 10⁻⁴ = 26.497 x 10⁴
F = 19.625 x 26.497
= 520 N
Answer: The energy delivered to the toaster is 264.490KJ
Explanation:
Here is the complete question:
The resistance of a bagel toaster is 14 ?. To prepare a bagel, the toaster is operated for one minute from a 120-V outlet. How much energy is delivered to the toaster?
Step-by-step explanation:
Please see attachment below
Answer:
Explanation:
Since the front and back of the rocket simultaneously line up with forward and backward end of the platform respectively .
Then length of the platform = length of the train rocket .
A )
Time to cross a particular point on the platform
= length of rocket train / .96 x 3 x 10⁸
= 90 / .96 x 3 x 10⁸
= 31.25 x 10⁻⁸ s
B) Rest length of the rocket = length of platform = 90 m
C ) length of platform as viewed by moving observer =

= 
= 321 m
D ) For the observer on platform time taken = 31.25 x 10⁻⁸ s
for the observer in the rocket , time will be dilated so time recorded by observer in motion ,
8.75 x 10⁻⁸ s .