Kinetic energy is calculated through the equation,
KE = 0.5mv²
At initial conditions,
m₁: KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J
m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J
Due to the momentum balance,
m₁v₁ + m₂v₂ = (m₁ + m₂)(V)
Substituting the known values,
(0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)
V = 0.2977 m/s
The kinetic energy is,
KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
KE = 0.03146 J
The difference between the kinetic energies is 0.0473 J.
<span>Use the kinematic equation vf^2 = vi^2 + 2ad where;
vf = ?
vi = 0 m/s
a = 9.8 m/s^2
d1 = 10 m
d2 = 25 m
final velocity at the ground (d1): vf = sqrt(2)(9.8)(10) = 14 m/s
final velocity to the bottom of the cliff (d2): vf = sqrt(2)(9.8)(25) = 22.14 m/s
</span>
B. velocity at position x, velocity at position x=0, position x, and the original position
In the equation
=
+2 a x (x - x₀)
= velocity at position "x"
= velocity at position "x = 0 "
x = final position
= initial position of the object at the start of the motion