answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zheka24 [161]
2 years ago
5

The intensity at a distance of 6.0 m from a source that is radiating equally in all directions is 6.0 × 10-10 w/m2 . what is the

power emitted by the source?
Physics
1 answer:
satela [25.4K]2 years ago
3 0
The intensity is defined as the ratio between the power emitted by the source and the area through which the power is calculated:
I= \frac{P}{A} (1)
where
P is the power
A is the area

In our problem, the intensity is I=6.0 \cdot 10^{-10} W/m^2. At a distance of r=6.0 m from the source, the area intercepted by the radiation (which propagates in all directions) is equal to the area of a sphere of radius r, so:
A=4 \pi r^2 = 4 \pi (6.0 m)^2 = 452.2 m^2

And so if we re-arrange (1) we find the power emitted by the source:
P=IA = (6.0 \cdot 10^{-10}W/m^2)(452.2 m^2)=2.7 \cdot 10^{-7} W
You might be interested in
You are learning about energy transformations in science class. Mel and Sam's built this set-up to see if light energy could be
Allisa [31]
I think it might be heat energy. light transforms into heat energy
5 0
2 years ago
Calculate the pressure, in atmospheres, exerted by each of the following:
gregori [183]

Answer:

a) 14.2 atm

b) 4.46 atm

c) 1.06 atm

Explanation:

For an ideal gas,

PV = nRT

P = pressure of the gas

V = volume occupied by the gas

n = number of moles of the gas

R = molar gas constant = 0.08206 L.atm/mol.K

T = temperature of the gas in Kelvin

a) For HF,

P =?, V = 2.5L, n = 1.35 moles, T = 320K

P = 1.35 × 0.08206 × 320/2.5

P = 14.2 atm

b) For NO₂

P =?, V = 4.75L, n = 0.86 moles, T = 300K

P = 0.86 × 0.08206 × 300/4.75

P = 4.46 atm

c) For CO₂

P =?, V = 5.5 × 10⁴ mL = 55L, n = 2.15 moles, T = 57°C = 330K

P = 2.15 × 0.08206 × 330/55

P = 1.06 atm

4 0
2 years ago
A toroidal coil has a mean radius of 16 cm and a cross-sectional area of 0.25 cm2; it is wound uniformly with 1000 turns. A seco
Roman55 [17]

Answer:

Explanation:

Mutual inductance is equal to magnetic flux induced in the secondary coli due to unit current in the primary coil .

magnetic field in a torroid  B = μ₀ n I , n is number of turns per unit length and I is current .

B = 4π x 10⁻⁷ x (1000 / 2π x .16  )x 1 ( current = 1 A)

flux in the secondary coil

= B x area of face of coil x no of turns of secondary

= 4π x 10⁻⁷ x (1000 /2π x .16  ) .25 x 10⁻⁴ x 750

= 2 x 1000 x .25 x( 750 /.16) x 10⁻¹¹

2343.75 x 10⁻⁸

= 23.43 x 0⁻⁶ H.

.

6 0
2 years ago
Read 2 more answers
A slender uniform rod 100.00 cm long is used as a meter stick. Two parallel axes that are perpendicular to the rod are considere
Nataliya [291]

Answer:

The correct answer is D    I_{30} /I_{50} =   1.5

Explanation:

In this exercise the moment of inertia equation should be used

    I = ∫ r² dm

In addition to the parallel axis theorem

    I = I_{cm} + M D²

Where  I_{cm} is the moment of the center of mass, M is the total mass of the body and D the distance from this point to the axis of interest

Let's apply these relationships to our problem, the center of mass of a uniform rod coincides with its geometric center, in this case the rod is 1 m long, so the center of mass is in

    L = 100.00 cm (1m / 100 cm) = 1.0000 m

     x_{cm} = 50 cm = 0.50 m

Let's calculate the moment of inertia for this point, suppose the rod is on the x-axis and use the concept of linear density

    λ = M / L = dm / dx

    dm =  λ dx

Let's replace in the moment of inertia equation

    I = ∫ x² ( λ dx)

We integrate

    I =  λ x³ / 3

We evaluate between the lower limits x = -L/2 to the upper limit x = L/2

    I =  λ/3 [(L/2)³ - (-L/2)³] = lam/3  [L³/8 - (-L³ / 8)]

    I =  λ/3  L³/4

    I = 1/12  λ L³

Let's replace the linear density with its value

    I = 1/12  (M/L)  L³

    I = 1/12  M L²

Let's calculate with the given values

   I = 1/12  M 1²

   I = 1/12 M

This point is the center of mass of the rod

    Icm = I = 1/12 M  = 8.333 10-2 M

Now let's use the parallel axis theorem to calculate the moment of resection of the new axis, which is 0.30 m from one end, in this case the distance is

    D = x_{cm} - x

    D = 0.50 - 0.30

    D = 0.20  m

Let's calculate

   I_{30} =I_{cm} + M D²

   I_{30} = 1/12 M + M 0.202

   I_{30} = M (1/12 + 0.04)

   I_{30} = M 0.123

To find the relationship between the two moments of inertia, divide the quantities

  I_{30} / I_{50} = M 0.123 / (M 8.3 10-2)

   I_{30} /I_{50} = 1.48

The correct answer is d 1.5

6 0
2 years ago
Two vectors are presented as a=3.0i +5.0j and b=2.0i+4.0j find (a) a x b, ab (c) (a+b)b and (d) the component of a along the dir
Svet_ta [14]
Let's ask this question step by step:
 Part A) 
 a x b = (3.0i + 5.0j) x (2.0i + 4.0j) = (12-10) k = 2k
 ab = (3.0i + 5.0j). (2.0i + 4.0j) = 6 + 20 = 26
 Part (c)
 (a + b) b = [(3.0i + 5.0j) + (2.0i + 4.0j)]. (2.0i + 4.0j)
 (a + b) b = (5.0i + 9.0j). (2.0i + 4.0j)
 (a + b) b = 10 + 36
 (a + b) b = 46
 Part (d)
 comp (ba) = (a.b) / lbl
 a.b = (3.0i + 5.0j). (2.0i + 4.0j) = 6 + 20 = 26
 lbl = root ((2.0) ^ 2 + (4.0) ^ 2) = root (20)
 comp (ba) = 26 / root (20)
 answer
 2k
 26
 46
 26 / root (20)
3 0
2 years ago
Other questions:
  • a field hockey ball is launched from the ground at an angle to the horizontal. what are the ball's horizontal and vertical accel
    11·1 answer
  • Scientists in a test lab are testing the hardness of a surface before constructing a building. Calculations indicate that the en
    9·1 answer
  • A 1.00-kilogram ball is dropped from the top of a building. just before striking the ground, the ball's speed is 12.0 meters per
    14·1 answer
  • A body covers a semicircle of radius 7cm in 5s .find its linear speed
    9·1 answer
  • A square loop of wire with initial side length 10 cm is placed in a magnetic field of strength 1 T. The field is parallel to the
    10·1 answer
  • Neglecting the effect of air resistance a stone dropped off a 175-m high building lands on the ground in: A)3s B)4s C)6s D)18s E
    12·1 answer
  • If the gas in a container absorbs 275 Joules of heat, has 125 Joules of work done on it, then does 50 Joules of work, what is th
    14·1 answer
  • A laser beam of wavelength λ=632.8 nm shines at normal incidence on the reflective side of a compact disc. The tracks of tiny pi
    10·1 answer
  • A steel cylinder at sea level contains air at a high pressure. Attached to the tank are two gauges, one that reads absolute pres
    11·2 answers
  • Concerned with citizen complaints of price gouging during past hurricanes, Florida's state government passes a law setting a pri
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!