<h2>
Answer: 117.626m/s</h2>
Explanation:
The escape velocity
is given by the following equation:
(1)
Where:
is the Gravitational Constant and its value is
is the mass of the asteroid
is the radius of the asteroid
On the other hand, we know the density of the asteroid is
and its volume is
.
The density of a body is given by:
(2)
Finding
:
(3)
(4) This is the mass of the spherical asteroid
In addition, we know the volume of a sphere is given by the following formula:
(5)
Finding
:
(6)
(7)
(8) This is the radius of the asteroid
Now we have all the necessary elements to calculate the escape velocity from (1):
(9)
Finally:
This is the minimum initial speed the rocks need to be thrown in order for them never return back to the asteroid.
Answer:
See the answer below
Explanation:
<u>Independent variable</u>: Type of drug (Mem-Reen or placebo)
<u>Dependent variable</u>: memories
<u>Experimental group</u>: The group that was given Mem-Reen
<u>Control group</u>: The group that was given placebo
<u>Constants</u>: Food, hours of sleep, memory test procedures.
The independent variable is an input variable that produces effects on the dependent variable. As the variable is changed, it produces different effects on the dependent variable.
The dependent variable is the actual variable that is measured during an experiment. It is the main purpose of setting-up of an experiment.
The experimental group is also referred to as the treatment group while the control group is the group that does not receive treatment at all or they receive fake treatment/placebo.
Constants are unchanging variables included in experiments. They remain unchanged both in the treatment and the control group, otherwise, the outcome of the experiment will be unreliable.
Answer:
a) v = √ g x
, b) W = 2 m g d
, c) a = ½ g
Explanation:
a) For this exercise we use Newton's second law, suppose that the block of mass m moves up
T-W₁ = m a
W₃ - T = M a
w₃ - w₁ = (m + M) a
a = (3m - m) / (m + 3m) g
a = 2/4 g
a = ½ g
the speed of the blocks is
v² = v₀² + 2 ½ g x
v = √ g x
b) Work is a scalar, therefore an additive quantity
light block s
W₁ = -W d = - mg d
3m heavy block
W₂ = W d = 3m g d
the total work is
W = W₁ + W₂
W = 2 m g d
c) in the center of mass all external forces are applied, they relate it is
a = ½ g
Explanation:
It is given that,
Mass of the car 1, 
Initial speed of car 1,
(east)
Mass of the car 2, 
Initial speed of car 2,
(north)
(b) As the cars stick together. It is a case of inelastic collision. Let V is the common speed after the collision. Using the conservation of momentum as :




The magnitude of speed,

V = 12.22 m/s
(b) Let
is the direction the wreckage move just after the collision. It is given by :



Hence, this is the required solution.