Answer:
2.25 %
Explanation:
65-95-99.7 is a rule to remember the precentages that lies around the mean.
at the range of mean (
) plus or minus one standard deviation (
),
at the range of mean plus or minus two standard deviation,
at the range of mean plus or minus three standard deviation,
So, note that they are asking about the probability that it is greater than 0.32, that is the mean (0.3) plus two times the standard deviation (0.1) (
)
So we know that the 95.5% is between
and
, hence approximately the 4.5% (100%-95.5%) is greater than 0.32 or less than 0.28. But half (4.5%/2=2.25%) is greater than 0.32 and the other half is less than 0.28.
So
We get the clearest image if there is no magnification. When we have no magnification the image and real object have the same size.
If we look at the diagram that I attached we can see that:

Two triangles that I marked are similar and from this we get:

The image and the object must have the same height so we get:

This tells how far the screen should be from the lens.
The position of the screen on the optical bench is:
Since I'm assuming that its perfectly elastic, considering there's not enough information given, so I think that no energy is dissipated in the collision
hmax = h - d + { [ mpvp - mb√(2gd) ] / (mp+mb) }² / (2g)
Answer:
ºC
Explanation:
First, let's write the energy balance over the duct:

It says that the energy that goes out from the duct (which is in enthalpy of the mass flow) must be equals to the energy that enters in the same way plus the heat that is added to the air. Decompose the enthalpies to the mass flow and specific enthalpies:

The enthalpy change can be calculated as Cp multiplied by the difference of temperature because it is supposed that the pressure drop is not significant.

So, let's isolate
:

The Cp of the air at 27ºC is 1007
(Taken from Keenan, Chao, Keyes, “Gas Tables”, Wiley, 1985.); and the only two unknown are
and Q.
Q can be found knowing that the heat flux is 600W/m2, which is a rate of heat to transfer area; so if we know the transfer area, we could know the heat added.
The heat transfer area is the inner surface area of the duct, which can be found as the perimeter of the cross section multiplied by the length of the duct:
Perimeter:

Surface area:

Then, the heat Q is:

Finally, find the exit temperature:

=27.0000077 ºC
The temperature change so little because:
- The mass flow is so big compared to the heat flux.
- The transfer area is so little, a bigger length would be required.