Answer:

Explanation:
Given that

We know that acceleration a given as




We know that



So the magnitude of force F

The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is
, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W = 
= 
= ![[14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}](https://tex.z-dn.net/?f=%5B14000x%20%2B%205000x%5E%7B2%7D%20-%208666.7x%5E%7B3%7D%5D%5E%7B0.54%7D_%7B0%7D)
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.
Answer:
0 kg m/s before and after collision
Explanation:
Let m, v be the mass and speed of the 2 balls, respectively, before the collision. Since they have the same mass and same speed but in opposite direction, the total momentum of the system would be:
P = mv - mv = 0 kg m/s
As the collision is elastic. The total momentum after the collision is the same as the total momentum before the collision, which is 0.
Answer:
17 m/s south
Explanation:
= Mass of dog = 10 kg
= Mass of skateboard = 2 kg
v = Combined velocity = 2 m/s
= Velocity of dog = 1 m/s
= Velocity of skateboard
In this system the linear momentum is conserved

The velocity of the skateboard will be 17 m/s south as the north is taken as positive
<span>an object that appears black absorbs al color. an object that appears white reflects all colors.</span>