Answer:
a) W_total = 8240 J
, b) W₁ / W₂ = 1.1
Explanation:
In this exercise you are asked to calculate the work that is defined by
W = F. dy
As the container is rising and the force is vertical the scalar product is reduced to the algebraic product.
W = F dy = F Δy
let's apply this formula to our case
a) Let's use Newton's second law to calculate the force in the first y = 5 m
F - W = m a
W = mg
F = m (a + g)
F = 80 (1 + 9.8)
F = 864 N
The work of this force we will call it W1
We look for the force for the final 5 m, since the speed is constant the force must be equal to the weight (a = 0)
F₂ - W = 0
F₂ = W
F₂ = 80 9.8
F₂ = 784 N
The work of this fura we will call them W2
The total work is
W_total = W₁ + W₂
W_total = (F + F₂) y
W_total = (864 + 784) 5
W_total = 8240 J
b) To find the relationship between work with relate (W1) and work with constant speed (W2), let's use
W₁ / W₂ = F y / F₂ y
W₁ / W₂ = 864/784
W₁ / W₂ = 1.1
Answer:
Please find the answer in the explanation
Explanation:
Given that A 1.0 g plastic bead, with a charge of -6.0 nC, is suspended between the two plates by the force of the electric field between them.
Since it is suspended, it must have been repelled by the bottom negative plate and trying to be attracted to the top plate.
We can therefore conclude that the upper plate, is positively charged
B.) The charge on the positive plate of parallel-plate capacitor is constructed of two horizontal 12.0-cm-diameter circular plates must be less than 6.0 nC
Answer:
47.76°
Explanation:
Magnitude of dipole moment = 0.0243J/T
Magnetic Field = 57.5mT
kinetic energy = 0.458mJ
∇U = -∇K
Uf - Ui = -0.458mJ
Ui - Uf = 0.458mJ
(-μBcosθi) - (-μBcosθf) = 0.458mJ
rearranging the equation,
(μBcosθf) - (μBcosθi) = 0.458mJ
μB * (cosθf - cosθi) = 0.458mJ
θf is at 0° because the dipole moment is aligned with the magnetic field.
μB * (cos 0 - cos θi) = 0.458mJ
but cos 0 = 1
(0.0243 * 0.0575) (1 - cos θi) = 0.458*10⁻³
1 - cos θi = 0.458*10⁻³ / 1.397*10⁻³
1 - cos θi = 0.3278
collect like terms
cosθi = 0.6722
θ = cos⁻ 0.6722
θ = 47.76°